

# FAAST FLEX Product Guide



FLX-010 FLX-020

March 2022 Doc. No. A05-7020-000 DocManager No.36639\_01

#### **Intellectual Property and Copyright**

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF HONEYWELL INTERNATIONAL INC. AND/OR ITS SUBSIDIARIES ("HONEYWELL"), AND CONTAINS HONEYWELL TRADE SECRETS. NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE REPRODUCED, USED, DISTRIBUTED OR DISCLOSED TO OTHERS WITHOUT THE WRITTEN CONSENT OF HONEYWELL. NOTHING CONTAINED HEREIN SHALL BE CONSTRUED AS CONFERRING BY IMPLICATION, ESTOPPEL, OR OTHERWISE ANY LICENSE TO ANY PATENT, TRADEMARK, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT OF HONEYWELL OR ANY THIRD PARTY. © Honeywell 2021

#### **Disclaimer**

The contents of this document is provided on an "as is" basis. No representation or warranty (either express or implied) is made as to the completeness, accuracy or reliability of the contents of this document. The manufacturer reserves the right to change designs or specifications without obligation and without further notice. Except as otherwise provided, all warranties, express or implied, including without limitation any implied warranties of merchantability and fitness for a particular purpose are expressly excluded.

#### **General Warning**

This product must only be installed, configured and used strictly in accordance with the General Terms and Conditions, User Manual and product documents available from Xtralis. All proper health and safety precautions must be taken during the installation, commissioning and maintenance of the product. The system should not be connected to a power source until all the components have been installed. Proper safety precautions must be taken during tests and maintenance of the products when these are still connected to the power source. Failure to do so or tampering with the electronics inside the products can result in an electric shock causing injury or death and may cause equipment damage. Xtralis is not responsible and cannot be held accountable for any liability that may arise due to improper use of the equipment and/or failure to take proper precautions. Only persons trained through an Xtralis accredited training course can install, test and maintain the system.

#### Liability

You agree to install, configure and use the products strictly in accordance with the User Manual and product documents available from Xtralis.

Xtralis is not liable to you or any other person for incidental, indirect, or consequential loss, expense or damages of any kind including without limitation, loss of business, loss of profits or loss of data arising out of your use of the products. Without limiting this general disclaimer the following specific warnings and disclaimers also apply:

#### **Fitness for Purpose**

You agree that you have been provided with a reasonable opportunity to appraise the products and have made your own independent assessment of the fitness or suitability of the products for your purpose. You acknowledge that you have not relied on any oral or written information, representation or advice given by or on behalf of Xtralis or its representatives.

#### **Total Liability**

To the fullest extent permitted by law that any limitation or exclusion cannot apply, the total liability of Xtralis in relation to the products is limited to:

- i. in the case of services, the cost of having the services supplied again; or
- ii. in the case of goods, the lowest cost of replacing the goods, acquiring equivalent goods or having the goods repaired.

#### Indemnification

You agree to fully indemnify and hold Xtralis harmless for any claim, cost, demand or damage (including legal costs on a full indemnity basis) incurred or which may be incurred arising from your use of the products.

#### Miscellaneous

If any provision outlined above is found to be invalid or unenforceable by a court of law, such invalidity or unenforceability will not affect the remainder which will continue in full force and effect. All rights not expressly granted are reserved.

### **Document Conventions**

The following typographic conventions are used in this document:

| Convention | Description                                                                                                              |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Bold       | Used to denote: emphasis.                                                                                                |  |  |
|            | Used for names of menus, menu options, toolbar buttons                                                                   |  |  |
| Italics    | <b>Used to denote</b> : references to other parts of this document or other documents. Used for the result of an action. |  |  |

The following icons are used in this document:

| Convention | Description                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u></u>    | Caution: This icon is used to indicate that there is a danger to equipment. The danger could be loss of data, physical damage, or permanent corruption of configuration details. |
| A          | <b>Warning:</b> This icon is used to indicate that there is a danger of electric shock. This may lead to death or permanent injury.                                              |
|            | <b>Warning:</b> This icon is used to indicate that there is a danger of inhaling dangerous substances. This may lead to death or permanent injury.                               |

### **Contact Us**

| UK and Europe                             | +44 1442 242 330 |  |  |
|-------------------------------------------|------------------|--|--|
| The Americas                              | +1 800 229 4434  |  |  |
| Middle East                               | +962 6 588 5622  |  |  |
| Asia                                      | +86 10 56697101  |  |  |
| Australia and New Zealand +61 3 9936 7000 |                  |  |  |
| www.xtralis.com                           |                  |  |  |

### **Codes and Standards Information for Air Sampling Smoke Detection**

We strongly recommend that this document is read in conjunction with the appropriate local codes and standards for smoke detection and electrical connections. This document contains generic product information and some sections may not comply with all local codes and standards. In these cases, the local codes and standards must take precedence. The information below was correct at time of printing but may now be out of date, check with your local codes, standards and listings for the current restrictions.

#### **FCC Compliance Statement**

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, the user is encouraged to try to correct the interference by one or more of the following measures; re-orientate or relocate the receiving antenna, increase the separation between the equipment and receiver, connect the equipment to a power outlet which is on a different power circuit to the receiver or consult the dealer or an experienced radio/television technician for help.

#### **Regional Regulatory Requirements and Notices**

#### **European Installations**



Honeywell Products and Solutions Sàrl Zone d'activités La Piece 16 CH-1180 ROLLE Switzerland

CE DoP: DOP-ASP038

EN 54-20: 2006

Aspirating smoke detectors for fire detection and fire alarm systems for buildings

Classes: A, B and C

### **Product Listings**

VdS

• EN 54-20, ISO 7240:20

ActivFire

Honeywell Products & Solutions Sarl Z.A. La Pièce 16 1180 ROLLE (SWITZERLAND)

Doc. No. A05-7020-000 DocManager No. 36639 01

www.xtralis.com iii

# **Table of Contents**

| 1  | Introduction 3                                |                                                                                                                   |                                        |  |  |
|----|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
|    | 1.1<br>1.2<br>1.3                             | Unit Description Storage and Shipping Ordering Information                                                        | 3<br>3<br>4                            |  |  |
| 2  | Speci                                         | fications                                                                                                         | 5                                      |  |  |
| 3  | General Information 6                         |                                                                                                                   |                                        |  |  |
| 4  |                                               | Components                                                                                                        | 7                                      |  |  |
| 5  | _                                             | Panel Indicators                                                                                                  | 8                                      |  |  |
| 6  |                                               | ple Alarms                                                                                                        | 9                                      |  |  |
| 7  |                                               | cal Installation                                                                                                  | 10                                     |  |  |
|    | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7 | Orientation Front Label Instruction Sheet Removing the Cover Cable Access Piping Considerations Mounting the Unit | 10<br>10<br>11<br>12<br>12<br>13<br>14 |  |  |
| 8  | Wirin                                         | g Installation                                                                                                    | 16                                     |  |  |
|    | 8.1<br>8.2                                    | Wiring Considerations GPI (General Purpose Input)                                                                 | 16<br>16                               |  |  |
| 9  | Relay                                         | Outputs                                                                                                           | 17                                     |  |  |
| 10 | User                                          | Interface                                                                                                         | 19                                     |  |  |
| 11 | Work                                          | ing Modes                                                                                                         | 20                                     |  |  |
|    | 11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6  | INITIALIZATION Mode PROTECTION Mode SERVICE (or STANDBY) Mode NORMAL Mode WAIT Mode DISABLED Mode                 | 20<br>21<br>21<br>21<br>21<br>22       |  |  |
| 12 | Chan                                          | ging the Passcode                                                                                                 | 23                                     |  |  |
| 13 | Authe                                         | enticating - Entering Passcode                                                                                    | 25                                     |  |  |
| 14 | Confi                                         | guration                                                                                                          | 26                                     |  |  |
|    | 14.1<br>14.2<br>14.3                          | Configuration Modes  DIP Switch Configuration  Changing Configuration Mode                                        | 26<br>27<br>30                         |  |  |
| 15 | Test I                                        | Mode                                                                                                              | 31                                     |  |  |
| 16 | Norm                                          | alize                                                                                                             | 33                                     |  |  |
| 17 | Reset                                         | ting Alarms and Faults                                                                                            | 34                                     |  |  |
| 18 | EEPR                                          | OM Factory Reset                                                                                                  | 35                                     |  |  |
| 19 | Passcode Recovery                             |                                                                                                                   |                                        |  |  |
| 20 | Maint                                         | enance                                                                                                            | 37                                     |  |  |
|    | 20.1<br>20.2<br>20.3                          | Sensor Replacement Aspirator Replacement Filter Replacement                                                       | 37<br>38<br>39                         |  |  |
| 21 |                                               | Logs                                                                                                              | 40                                     |  |  |

| 22 | Piping Design Guidelines      | 45 |
|----|-------------------------------|----|
| 23 | Battery Removal for Recycling | 59 |

### 1 Introduction

The FLEX Series is part of the Fire Alarm Aspiration Sensing Technology® (FAAST) family. FAAST is an advanced fire detection system for use where configurability, sensitivity and very early warning are a requirement. The system continuously draws air from the monitored environment through a series of sampling holes to monitor the environment for smoke particulate.

The FLEX has two channel capability with two high sensitivity smoke sensors in separate chambers (one sensor for each channel).

Note:

Aspirating Smoke Detectors supplied and installed within the EU must conform to the EU Construction Products Regulation (CPR) 305/2011 and the related European Product Standard EN 54-20. FAAST has been tested and certified to ensure that it conforms to the necessary Standards, but strict adherence to this instruction guide is advised to ensure that the installation meets the requirements of the CPR.

This equipment and all associated pipe work must be installed in accordance with all relevant codes and regulations.

### 1.1 Unit Description

The FAAST FLEX is an aspirating smoke detector that provides early warning detection using a dedicated medium sensitivity smoke sensor. The FAAST FLEX is available as a one channel or two channel detector, Each sensing channel consists of an inlet, a metallic filter, a sensing element and a flow monitoring system. The product has a single aspirator and a single exhaust outlet. The FAAST FLEX is powered by an external 24 VDC power supply. Front panel LEDs indicate power, fault, and alarm status, and fault relays are activated in normal operation, and open in the event of a fault to notify monitoring systems. One General Purpose Input (GPI) is also provided.

Configuration of the device is typically via DIP switches on the circuit board. The circuit board also has a USB port that can be used by maintenance technicians to download event logs.

Components subject to periodic maintenance are designed to be easily reachable in any cabling situation. An in-line filter can be installed on the pipeing close to the inlet in order to improve protection to the sensing elements in particularly harsh (e.g. dusty) environments. The product is designed to protect an area up to  $1600m^2$  for 1 channel models and  $2000 m^2$  for two channel models. The product is designed to be compliant with EN54-20 Class A, B, and C sensitivity requirements.

### 1.2 Storage and Shipping

The FAAST FLEX detectors are shipped in specifically designed cartons. If the detectors must be stored, store the devices in the original shipping cartons. The product should be stored in an environmentally controlled, clean, dry, well ventilated area free from any corrosive agents. Do not store the devices for more than one year.

The detectors can be damaged by rough handling. During transportation, avoid violent vibration, heavy shock loads, and exposure to excessive heat or moisture.

# 1.3 Ordering Information

| Ordering Code | Description                         |
|---------------|-------------------------------------|
| FLX-010       | FAAST FLEX 1-pipe Stand-alone       |
| FLX-020       | FAAST FLEX 2-pipe Stand-alone       |
| FLX-SP-01     | FAAST FLEX Sensing Module           |
| FLX-SP-02     | FAAST FLEX Metal Filter (pack of 6) |
| FLX-SP-03-EN  | FAAST FLEX Front Cover (EN)         |
| FLX-SP-03-CH  | FAAST FLEX Front Cover (CH)         |
| FLX-SP-04     | FAAST FLEX Aspirator                |
| FLX-SP-05-EN  | FAAST FLEX INTERNAL COVERS SET EN   |
| FLX-SP-05-CH  | FAAST FLEX INTERNAL COVERS SET CH   |

# 2 Specifications

Table 2-1: FAAST FLEX Detector Specifications

| Specification                     | Value                                                                                                                |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Electrical Characteristics        |                                                                                                                      |  |  |
| Voltage Range                     | 24V Nominal                                                                                                          |  |  |
| Supply Current                    | Single Channel Model: 200 mA (typical) 400 mA (max) @ 24V                                                            |  |  |
| (@24 VDC 25°C)                    | Dual Channel Model: 220 mA (typical) 450 mA (max) @ 24V                                                              |  |  |
| General Purpose Input<br>(GPI)    | Activation Time 2s (min)                                                                                             |  |  |
| Relay Contact Ratings             | 2.0 A @ 30 VDC, 0.5 A @ 30 VAC                                                                                       |  |  |
| Environmental Ratings             |                                                                                                                      |  |  |
| Operating Conditions              | Temperature:                                                                                                         |  |  |
|                                   | <ul> <li>Ambient: -40 °C to 55 °C (-40°F to 131°F)</li> <li>Sampled Air: -40 °C to 55 °C (-40°F to 131°F)</li> </ul> |  |  |
|                                   | Humidity:                                                                                                            |  |  |
|                                   | 10-93% RH, non-condensing                                                                                            |  |  |
| Flow Fault                        | ± 20% of the reference flow                                                                                          |  |  |
| IP Rating                         | 40                                                                                                                   |  |  |
| Mechanical                        |                                                                                                                      |  |  |
| Exterior Dimensions               | 204 mm x 280 mm x 80.5 mm                                                                                            |  |  |
| Wiring                            | 0.5 mm² to 2.5 mm² maximum                                                                                           |  |  |
| Single Channel Model              | Linear pipe length: 2 X 105m                                                                                         |  |  |
|                                   | Branched pipe length: 4 X 68m                                                                                        |  |  |
| Maximum Number of Holes           | Refer to section "22 Piping Design Guidelines" for more information.                                                 |  |  |
| Pipe Spec<br>(EN54-20 Compliance) | EN 61386 (Crush 1, Impact 1, Temp 31)                                                                                |  |  |
| Outside Pipe Diameter             | 27 mm (nom) or 25 mm (nom) with plug/adapter                                                                         |  |  |
| Shipping Weight                   | 1.7 kg (including sensors)                                                                                           |  |  |

### 3 General Information

Figure 3-1 shows the information label on the FAAST FLEX. There is a QR code that can be scanned to access the online manual, and a barcode that can be scanned to access the model and serial number.

#### **Power Requirements**

The device requires an external 24 VDC power supply. In order to meet EN54-20 standard, the aspirating detector shall be supplied by a power supply complying with European Standard EN54-4. Operational Power Supply range is 18-30V. The device monitors the power supply and when supply voltage drops below 21V the device gives a LOW POWER alert (POWER LED shows steady RED). Moreover, the device has a brown-out circuit, which operates nominally at 17V. In this condition the device switches to POWER OUT OF RANGE state and activates fault relays. When the device is turned off by brown-out hardware circuit, the fault relays remains activated.

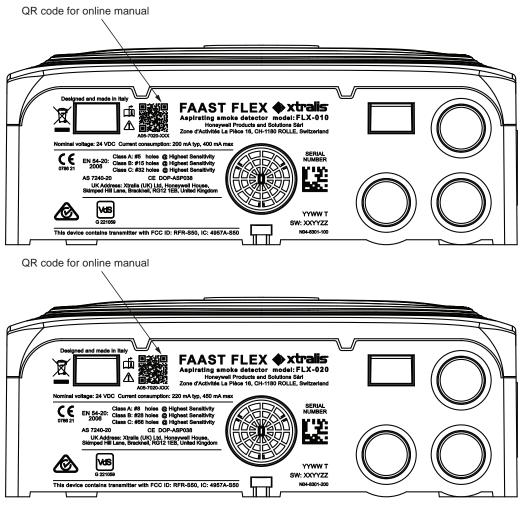



Figure 3-1: FAAST FLEX Product Information

# 4 Major Components

Figure 4-1 shows the major components of the FAAST FLEX. The FAAST FLEX is available in 1 Channel and 2 Channel models. For simplicity, the 2 Channel version is shown in illustrations in this manual unless there is an important difference between the two models.

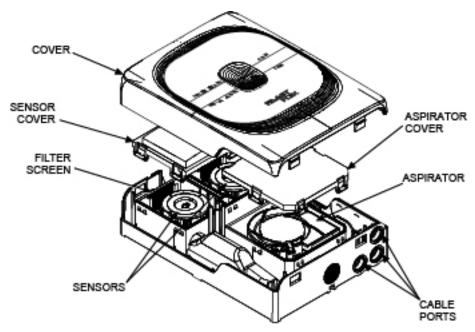



Figure 4-1: FAAST FLEX Major Components

# **5 Front Panel Indicators**

The FAAST FLEX front panel has six indicator LEDs the communicate status information to the operator (see Figure 5-1).

Table 5-1: LED Indicators

| LED              | Indications             | Meaning                                                                    |  |
|------------------|-------------------------|----------------------------------------------------------------------------|--|
| CHANNEL 1 ALARM  | Yellow, Steady          | Delay timer activated on Channel 1/2                                       |  |
| CHANNEL 2 ALARM  | Red, Steady             | Alarm condition on Channel 1/2                                             |  |
| CHANNEL 1 ACTION | Yellow, Steady          | Delay timer activated on Channel 1/2                                       |  |
| CHANNEL 2 ACTION | Red, Steady             | Action condition on Channel 1/2                                            |  |
|                  | Green, Steady           | Power on, normal operation                                                 |  |
|                  | Green, Fast Blink       | Bluetooth scanning in progress; or Disable mode                            |  |
| POWER            | Green, Slow Blink       | Change configuration                                                       |  |
| POWER            | Yellow, Steady          | Power on, system initializing                                              |  |
|                  | Red, Steady             | Protection mode - over voltage condition exists                            |  |
|                  | Red, Fast Blink         | Service mode                                                               |  |
|                  | Green, on for 3 seconds | Operation successful                                                       |  |
|                  | Green, fast blink       | Following initialization, indicates extended configuration is being loaded |  |
|                  | Yellow, Steady          | One or more faults detected                                                |  |
| FAULT            | Yellow, Fast Blink      | Waiting for user confirmation during configuration                         |  |
|                  | Yellow, Slow Blink      | One or more alerts detected                                                |  |
|                  | Red, on for 3 seconds   | Operation result failed                                                    |  |
|                  | Red, Fast Blink         | Normalize procedure in process                                             |  |

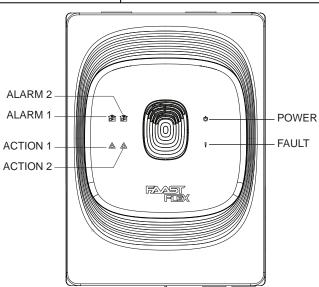



Figure 5-1: FAAST FLEX Indicator LEDs

### 6 Audible Alarms

The FAAST FLEX has a buzzer that provides the following audible feedback:

- Buzzer will sound whenever the user presses a button.
- Buzzer will sound for 0.5 seconds when the NORMALIZE procedure is completed (See section 16 Normalize).
- Buzzer will sound for 0.5 seconds when a data log file has been written to the USB drive (See section 15 Test Mode).
- Buzzer will sound for 0.5 seconds when the cover is opened or closed and there is a conflict between the DIP switch settings and the current device configuration (for example, if a DIP switch has been accidentally changed). See section 14 Configuration.

## 7 Physical Installation

#### 7.1 Orientation

The FAAST FLEX an be mounted either in standard orientation or inverted (see Figure 7-1). The access and location of the inlet and outlet pipes is usually the determining factor in selecting the orientation.

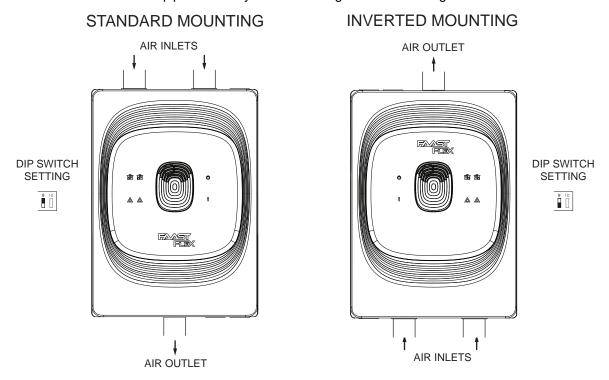



Figure 7-1: Mounting Orientation

#### 7.2 Front Label

The device is shipped with the front panel labels installed for standard mounting. The labels are double-sided; one side is printed for standard mounting, and the reverse side is printed for inverted mounting (see Figure 7-2). The label should be installed to match the mounting orientation. To place the label, detach the 4 gray clips from inside the cover and snap the retainers off the device. Position the label as desired, then snap the retainer back in place.

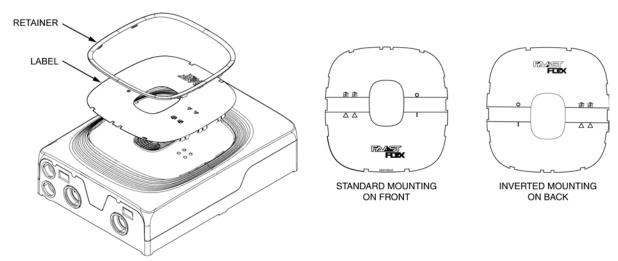



Figure 7-2: Front Label Installation

## 7.3 Instruction Sheet

Included with the FAAST FLEX is a graphical instruction sheet to assist installation.

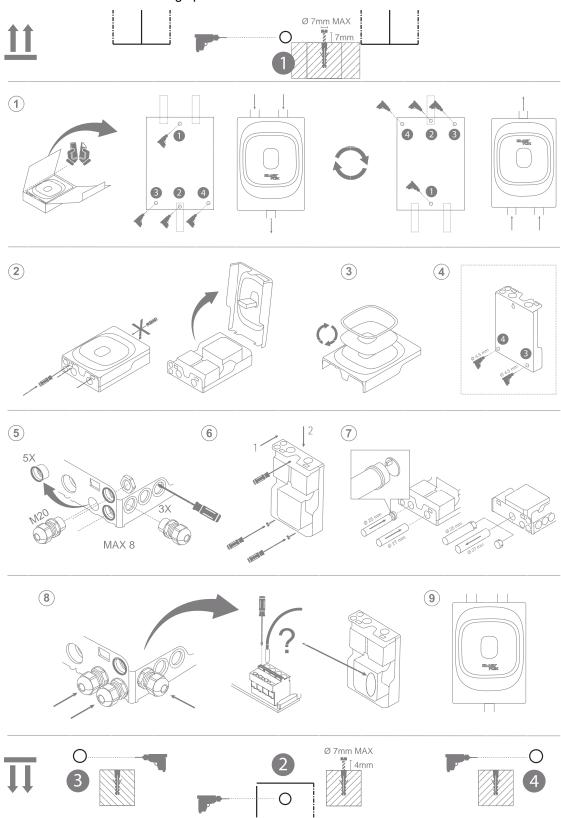



Figure 7-3: Graphical Installation Instructions

### 7.4 Removing the Cover

- 1. Using a small screwdriver or other suitable tool, press in the two **tabs on the inlet side of the FAAST FLEX** (see Figure 7-4).
- 2. Rotate the cover up as shown and remove it.

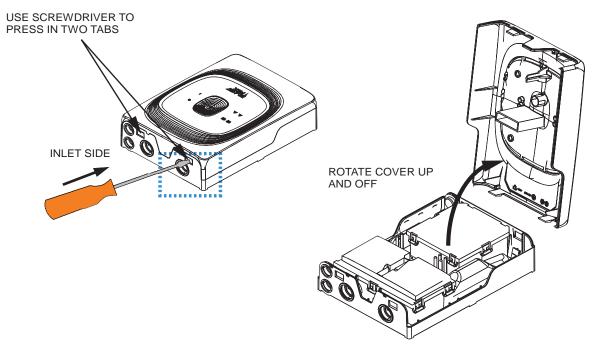



Figure 7-4: Removing the Cover

### 7.5 Cable Access

Determine the cable gland holes that will be used for your installation. The specific holes used will be different depending on the specifics of your installation. The top and bottom cable ports use a 20mm gland. For the side ports, you must use an appropriate punch tool (such as a screwdriver) to gently tap the covers out of the selected holes. Figure 7-5 shows the locations of the available cable ports.

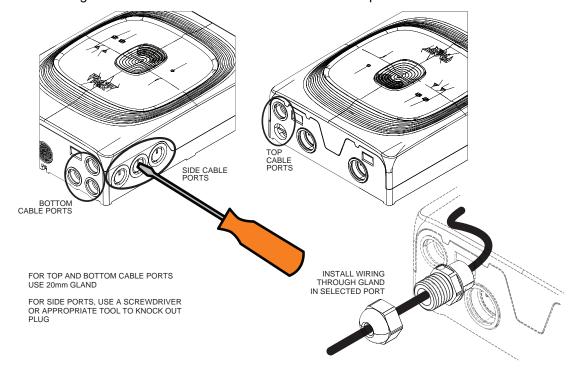



Figure 7-5: Cable Ports

### 7.6 Piping Considerations

1. Inlet ports that are not used should remain sealed.



Caution:

•

DO NOT glue piping into the inlet and exhaust ports. Pipes that are glued in will be deemed out of warranty, since they cannot be tested.

- To avoid contamination by dust, debris, insects, or spiders, It is recommended that inlet and exhaust ports remain plugged before use. Seal up inlet and exhaust ports if the device is turned off during maintenance periods.
- 3. Whenever the FAAST FLEX is installed outside the risk area, it is recommended that the exhaust air from the device be returned to the risk area. This will reduce flow faults caused by pressure differences (see Figure 7-6).

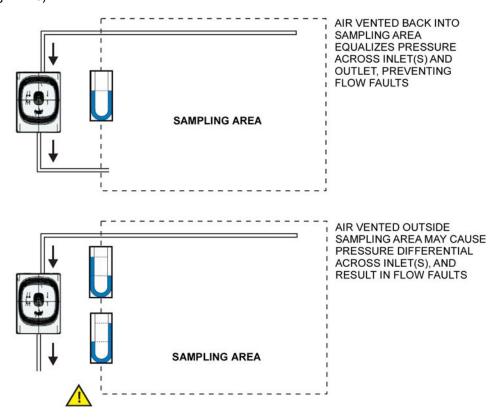



Figure 7-6: Piping Considerations

- 4. DO NOT USE GLUE OR ADHESIVE. The FAAST FLEX ports are designed to provide a complete seal without the use of any adhesives, glues, or other substances.
- 5. The FAAST FLEX is designed to accommodate either 27mm or 25mm pipe. If 25mm piping is used, an adapter is required. On the inlets, the pipe plugs can be used as an adapter by removing the center of the plug to open it up (see Figure 7-7). On outlet piping, the screen can be used as an adapter with 25mm piping (see Figure 7-8).

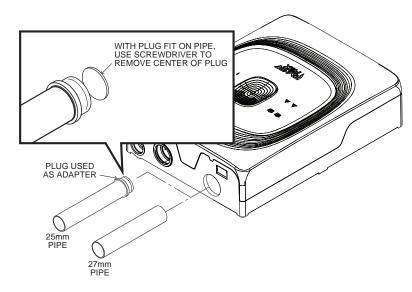



Figure 7-7: Inlet Piping Connections

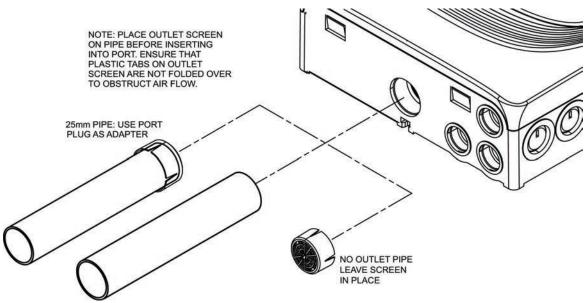



Figure 7-8: Outlet Piping Connections

# 7.7 Mounting the Unit

The FAAST FLEX is mounted on any wall or flat surface that is conveniently located for access to the piping and electrical connections. It can be mounted in the standard orientation or inverted 180°. Once the proper location has been determined, mount the device as follows:

**Note:** The FAAST FLEX can be mounted with either two or four screws, depending on your specific requirements.

- 1. The cover of the box FAAST FLEX, a template for the mounting holes is provided (see Figure 7-9).
- 2. Use the template to mark the locations for the mounting holes, ensuring that all piping and electrical connections are located properly.

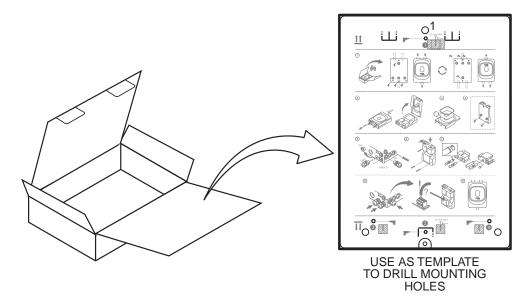



Figure 7-9: Mounting Template

- 3. Drill appropriate pilot mounting holes for M4 screws in the locations designated by the template.
- 4. Loosely install a screw in the Hole 1 location.
- 5. Position the FAAST FLEX in place over the mounting screw in Hole 1 (Figure 7-10), and slide it down into place.
- 6. Install a mounting screw in Hole 2.
- 7. Tighten the two mounting screws, taking care not to overtighten. Over tightening the screws can damage the device.
- 8. Optionally, install mounting screws in Holes 3 and 4.

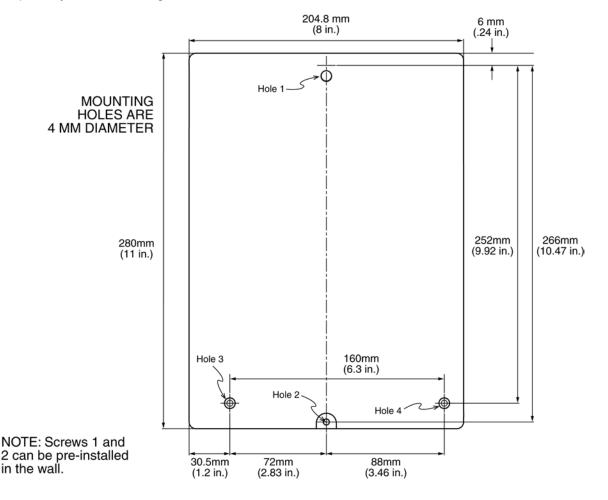



Figure 7-10: Mounting Hole Dimensions

# 8 Wiring Installation

### 8.1 Wiring Considerations

- 1. All wiring must comply with local requirements and regulations.
- 2. Panel wiring must comply with the recommendations of the panel manufacturer.
- 3. Always use appropriate gauge wire (10-12 gauge or 0.2 0.25mm). Inspect all connections to ensure they are tight and secure.
- 4. Remove the cover as shown in Figure 7-4.
- 5. Electrical connections are made to the terminal blocks as shown in Figure 9-1. Wire insulation should be stripped approximately 5mm from the end. Using a small screwdriver, push down on the small tab on the terminal block, and then insert the wire into the corresponding hole.

### 8.2 GPI (General Purpose Input)

One GPI is provided.

In OUT OF BOX configuration, when a transition between normal state (open) and active state (short) is detected, the device will perform a single device RESET.

# 9 Relay Outputs

For all the versions of the FAAST FLEX single pole, changeover, unsupervised contacts for Fault, Alarm and Action are provided for each channel. Alarm and Action relays are normally de-energized. They are switched on by the unit command. See table below for more details.

Note: In case of power down, Faults are activated. On 2 Channel models, generic fault conditions

activate both channels relays.

**Caution:** Output channel status should be checked before powering any circuit served by the output

channel itself to avoid any position change due to either shipment or installation handling.



Table 9-1: Relay Outputs

| LED         | Set Condition                                                                | Indications                              | Meaning                                                                              |
|-------------|------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|
| ALARM 1 / 2 | Alarm condition reached                                                      | LATCHED: Alarm reset sequence from user  |                                                                                      |
|             |                                                                              | UNLATCHED: Alarm condition ended         |                                                                                      |
| ACTION 1/2  | Action condition reached                                                     | LATCHED: Action reset sequence from user |                                                                                      |
|             |                                                                              | UNLATCHED: Action condition ended        |                                                                                      |
| FAULT 1/2   | One or more Fault condition(s) involving one or both channels are recognized | LATCHED: Fault reset sequence from user  | i.e. Flow or sensor<br>communication faults<br>involve the<br>corresponding channel; |
|             |                                                                              | UNLATCHED: Fault condition ended         | aspirator fault involves<br>both channels                                            |

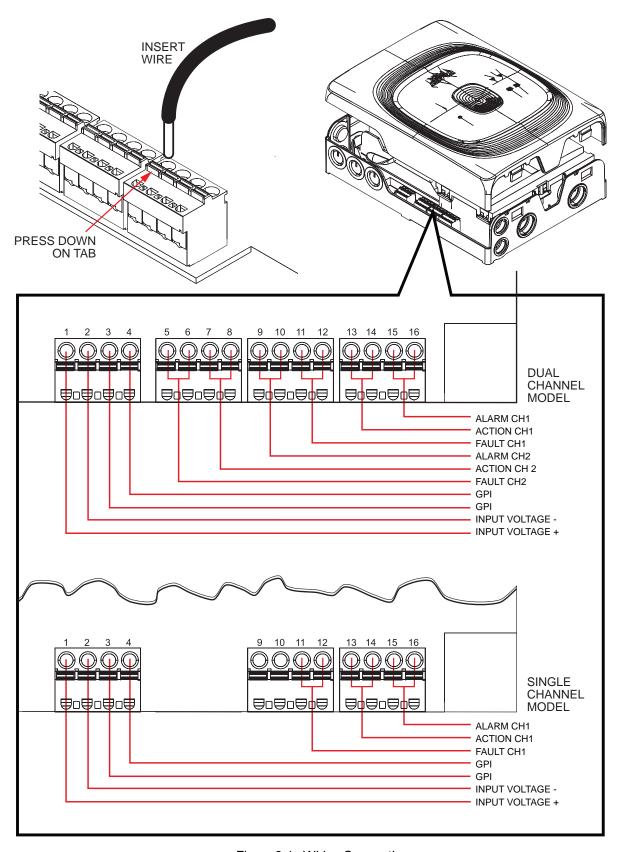
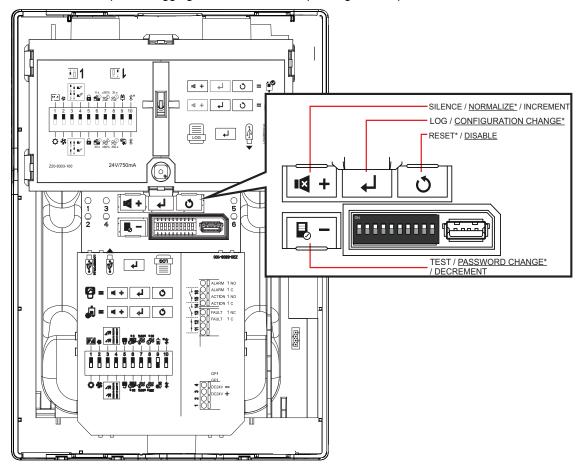




Figure 9-1: Wiring Connections

## 10 User Interface

There are four buttons located under the cover that are used to configure various operating parameters and perform additional setup, data logging, and test functions (see Figure 10-1).



- \*: Change the passcode to start the procedure.
- Underlined: Press and hold the button for 5 seconds to start the procedure.

Figure 10-1: User Buttons

### 11 Working Modes

Figure 11 illustrates the working modes of the device. In normal operation when the device is powered on it will initialize for 60 seconds and then it will enter NORMAL operating mode. If the cover opened, or if the cover is off when it is powered on it will enter WAIT mode. Closing the cover will return the device to NORMAL mode. Figure

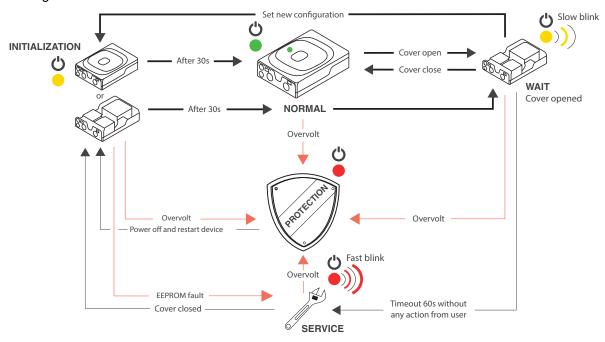



Figure 11-1: Working Modes

#### 11.1 INITIALIZATION Mode

After the power up, the device performs an initialization sequence with the following actions, during which the POWER LED is on steady yellow.

- · Checks power supply.
- Tests peripheral equipment connected to the device.
- Reads the EEPROM and DIP switch positions for configuration.

If there is a conflict between the DIP switch positions and the EEPROM values, the next step depends on whether the cover is open or closed.

- 1. If the cover is open, the device will prompt the user to enter the password in order to accept the new DIP switch position changes.
- If the cover is closed The device enters the "waiting for cover" mode where, for 60 seconds, FAULT LED will blink fast yellow. If the cover is opened within this 60 second period, the device will prompt the user for password and will accept changes that have been made.
  - If the cover is not opened within the 60 second window, the device will signal a configuration fault and will turn on the buzzer for 0.5 every time the cover is opened or closed

If the device has been configured to use the extended mode, at the end of initialization the FAULT LED blinks fast green for 3 seconds before changing - either to WAIT mode if the cover is open, or to NORMAL mode if the cover is closed.

#### 11.2 PROTECTION Mode

The device goes in PROTECTION in the following situations:

- EEPROM fault (from initialization mode only)
- Dataflash fault
- Power supply overvoltage

In PROTECTION mode, the POWER LED is steady red. The device switches off all peripherals and communications. The only way to exit PROTECTION mode is to completely power off the device and then power it back up.

### 11.3 SERVICE (or STANDBY) Mode

If cover is left open more that 60 seconds the device enters SERVICE Mode. The POWER LED blinks red (fast blink). This mode is typically used during hardware maintenance, for example changing or cleaning a filter screen in the field. During this working mode (also referred to as STANDBY Mode), the device switches off the aspirator, stops monitoring flows and sensing elements. No alarms or faults will be shown on the LEDs, relays (fault relays energized), or buzzer.

Additionally, USB and buttons sensing are turned off while Bluetooth is enabled to report Service mode only. From the SERVICE mode, users can initiate the password recovery process.

#### 11.4 NORMAL Mode

This is normal working mode. The device monitors the power supply voltage, aspirator speed, smoke levels, air flows, cover status, and signals and logs faults, actions, alarms.

#### 11.5 WAIT Mode

The WAIT mode is a sub-mode of the NORMAL mode. There are two ways to enter into the WAIT mode:

- 1. If the cover is open the device enters WAIT mode after power-on and initialization.
- 2. If the cover is opened while the device is in NORMAL mode.

On entering WAIT Mode the communication (loop) is interrupted and the POWER LED blinks yellow (slow blink). At this point the device is waiting for a button press.

After 60 seconds of no activity in WAIT mode the device will automatically transition into the SERVICE mode. Every time an action (button or BLT) is performed in WAIT mode the timeout timer restarts. If a non-protected action (no passcode required) is requested, the command is executed and then the device comes back to WAIT mode. If a protected action (passcode required) is requested, user is prompted to enter the passcode. If the passcode is correct the device will perform the requested action.

#### **WAIT Mode Actions**

**Note:** For a long press of a button, press and hold it for 5 seconds.

Table 11-1: WAIT Mode Actions

| Action                         | Button         | LED Display                                                                                                                 | Description                                                                 |
|--------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Toggle button beeps ON/OFF     | Short<br>Press | $ \begin{array}{cccc} \bigcirc & \bigcirc & \bigcirc \\ 1 & 3 & & 5 \\ \bigcirc & \bigcirc & & \\ 2 & 4 & & 6 \end{array} $ | LED 6 will show green for ON. Default is beeps OFF.                         |
| Place unit in TEST Mode        | Short<br>Press |                                                                                                                             | See section 15 Test Mode for more information                               |
| Copy LOGREPOR.TXT to USB drive | Short<br>Press |                                                                                                                             | USB drive must be inserted. See section 21 Event Logs for more information. |

| Action                                                                                                                                        | Button         | LED Display                    | Description                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset active Alarms or Faults (Passcode Authentication Required)                                                                              | Short<br>Press |                                | Resets the latched alarm and faults status.                                                                                                                       |
| Toggles DISABLE Mode ON/OFF                                                                                                                   | Long<br>Press  | O 5 O 6                        | LEDs 1 through 4 will show yellow to indicate unit is disabled.                                                                                                   |
| Enter CHANGE CONFIGURATION MODE (Passcode Authentication Required)                                                                            | Long<br>Press  | O<br>1 3<br>0<br>2 4<br>0<br>6 | LEDs 1 through 4 will show yellow to indicate unit is in configuration mode. See section 14 Configuration.                                                        |
| Initiate NORMALIZE procedure (Passcode Authentication Required - if not authenticated, you must enter the passcode to start procedure.)       | Long<br>Press  |                                | LEDs 1 through 4 will show<br>yellow to indicate that the<br>NORMALIZE procedure<br>has started. See section 16<br>Normalize.                                     |
| Initiate CHANGE PASSWORD procedure (Passcode Authentication Required - if not authenticated, you must enter the passcode to start procedure.) | Long<br>Press  |                                | LEDs 1 through 4 will show<br>yellow to indicate that the<br>CHANGE PASSWORD<br>procedure has started. See<br>section 11.6 DISABLED<br>Mode for more information. |

### 11.6 DISABLED Mode

When the device is put into DISABLED mode it will not report any alarm or fault conditions via the relays. LED functions will remain active. To indicate that the device is in DISABLED mode all the LEDs will slow flash yellow (once every 10 seconds). To disable the device, long press (5 seconds) the RESET button. LEDs 1, 2, 3, and 4 will show steady yellow to confirm the command. Repeating this procedure will return the device to normal operation. **Powering off the device will NOT exit DISABLED mode.** 

### 12 Changing the Passcode



Caution:

THE DEFAULT PASSCODE IS 000000 AND IT MUST BE CHANGED DURING DEVICE COMMISSIONING! BE SURE TO RECORD THE NEW PASSCODE IN ACCORDANCE WITH YOUR LOCAL POLICIES.

#### Overview

Certain actions related to operation and configuration of the FAAST FLEX are protected by use of a passcode. To enter the passcode, the user must press the SILENCE/+ or TEST/- buttons to enter the six digits of the passcode. Once the digit has been entered, press the ENTER button to confirm the digit. For example, to enter a 3 you would press the SILENCE/+ button three times. If you pressed the SILENCE/+ button four times, and then pressed the TEST/- button once, that would also register as a 3. Once all six digits have been entered, press the ENTER button again to confirm entry.

#### Example - Changing Passcode from 000000 to 123456

To change the passcode you must first enter the current passcode. Then you must enter the new passcode, and then re-enter the new passcode a second time to confirm that it is correct. The following procedure demonstrates changing the passcode from 000000 to 1111111.

1. Long-press the TEST button to enter the CHANGE PASSCODE mode. LEDs 1, 2, 3 and 4 will flash yellow, and then LED 1 will show steady yellow indicating that the device is waiting for entry of the first digit.

**Note:** The digit counter starts at 0, so pressing the ENTER button will record 0 as the current digit. The following table summarizes the actions of button presses during the procedure.

| Button    |            | Action(s)                                                                                                                                                                                                |  |
|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SILENCE/+ | <b>■</b> + | Increments the current digit (if smaller than 9).                                                                                                                                                        |  |
| TEST/-    |            | Decrements the current digit (if greater than 0).                                                                                                                                                        |  |
| RESET     | 4          | Cancels changes to the current digit entry and prompts for the user to reenter the digit.                                                                                                                |  |
| ENTER     | Ø          | Confirms the current digit and the corresponding LED shows yellow.  If all six digits have been confirmed and are correct, all LEDs will show green. If incorrect, all LEDs will show red for 3 seconds. |  |

- 2. Press the ENTER button six times to enter the default passcode (000000). Each time you press the ENTER button, the LED corresponding to that digit will show steady yellow indicating the digit has been entered. Once the sixth digit is entered, all six LEDs will show steady yellow.
- 3. Press the ENTER button again to confirm the passcode entry. The LEDs will all show green for five seconds, then will go out.
- 4. LED 1 will show steady yellow, prompting you for the first digit of the new passcode. Enter the new passcode as follows:
  - a. Press the SILENCE/+ button one time to enter 1 as the first digit. LED 1 will flash green as you press the SILENCE/+ button.
  - b. Press the ENTER button to enter the first digit. LED 1 will show steady yellow.
  - c. Press the SILENCE/+ button twice to enter 2 as the second digit. LED 2 will flash green as you press the SILENCE/+ button.
  - d. Press the ENTER button to enter the second digit. LED 1 and LED 2 will show steady yellow.
  - e. Press the SILENCE/+ button three times to enter 3 as the third digit. LED 3 will flash green as you press the SILENCE/+ button.
  - f. Press the ENTER button to enter the third digit. LEDs 1, 2, and 3 will show steady yellow.
  - g. Press the SILENCE/+ button four times to enter 4 as the fourth digit. LED 4 will flash green as you press the SILENCE/+ button.
  - h. Press the ENTER button to enter the fourth digit. LEDs 1, 2, 3 and 4 will show steady yellow.

- i. Press the SILENCE/+ button five times to enter 5 as the fifth digit. LED 5 will flash green as you press the SILENCE/+ button.
- j. Press the ENTER button to enter the fifth digit. LEDs 1, 2, 3, 4, and 5 will show steady yellow.
- k. Press the SILENCE/+ button six times to enter 6 as the last digit. LED 6 will flash green as you press the SILENCE/+ button.
- I. Press the ENTER button to enter the last digit. All LEDs will show green for 5 seconds, and then will go out.
- 5. Repeat the procedure in step 4 to re-enter and confirm the new passcode.

**Note:** After three failed attempts to enter the passcode, the unit will return to WAIT mode. The user must wait 20 seconds before attempting to re-enter the passcode. Each subsequent attempt will increase the wait time by an additional 20 seconds.

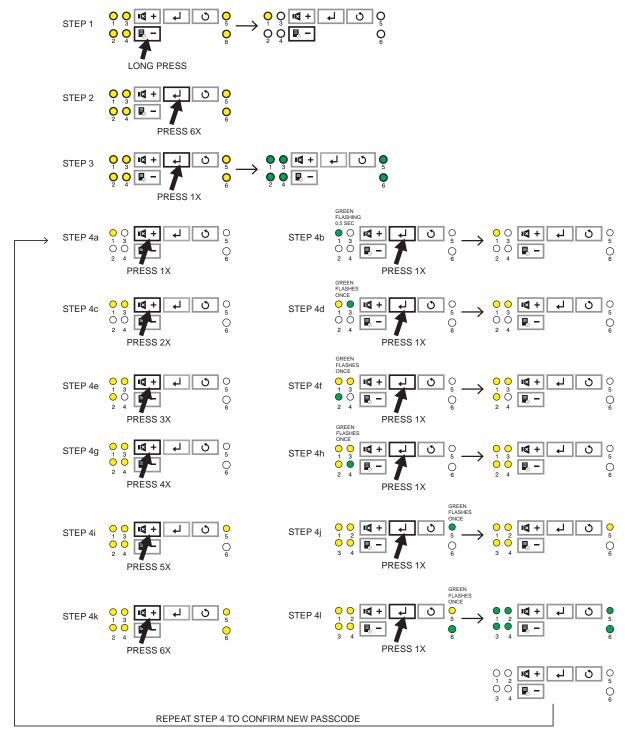



Figure 12-1: Changing Passcode

### 13 Authenticating - Entering Passcode

Access to some functions requires a passcode. Follow these steps to enter the passcode (see Figure 13-1):

**Note:** Passcodes are 6 digits long and digits from 0 to 9 are valid.

- 1. When you access a function that requires authentication, all the LEDs will blink YELLOW 3 times, indicating that you need to enter a valid passcode.
- 2. Using the SILENCE/+ or TEST/- buttons, enter the first digit of the passcode.
- 3. Press the ENTER button to confirm the first digit. LED 1 will be steady yellow and LED 2 will blink slow vellow.
- 4. Repeat the process until all six digits of the passcode have been entered.
- 5. After the sixth digit has been entered, if the passcode is correct all six LEDs will show steady green for 3 seconds. If the passcode is incorrect, all six LEDs will show steady red for 3 seconds and the process must be restarted.

#### **EXAMPLE: PASSCODE IS 794231**

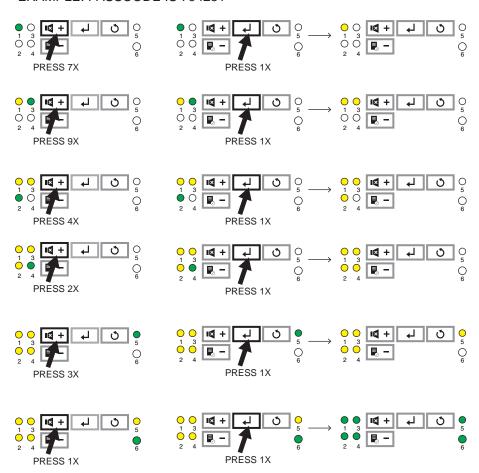



Figure 13-1: Entering Passcode Example

# 14 Configuration

### 14.1 Configuration Modes

The FAAST FLEX can be configured by two methods. Typical installations are configured using a DIP switch (see Figure 14-1). For custom installation, an Extended Configuration mode is available, In Extended Configuration mode, configuration information is stored in an on-board EEPROM. A guide to DIP switch configuration options is etched on the internal covers of the aspirator and sensors, as shown.

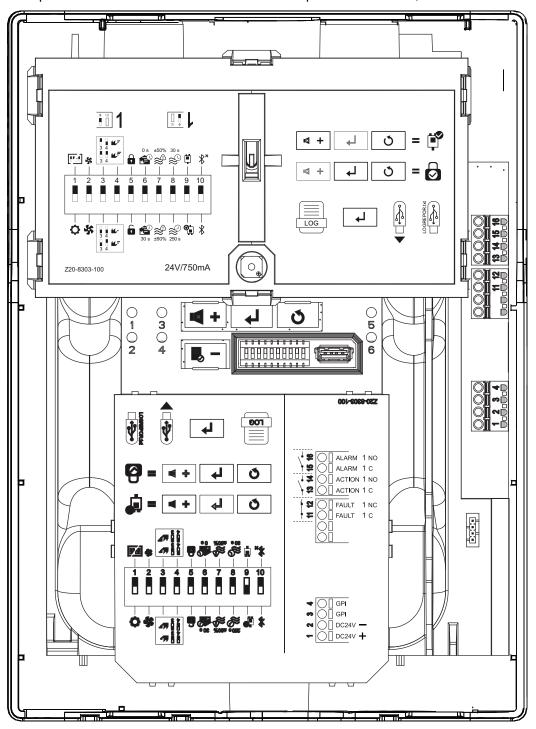



Figure 14-1: Configuration Laser Etching

**Note:** Default setting for all DIP switches is ON.

# 14.2 DIP Switch Configuration

Table 14-1: DIP Switch Configuration

| Switch  | Icon              | Setting                                                           | Position    | Description                                                    |
|---------|-------------------|-------------------------------------------------------------------|-------------|----------------------------------------------------------------|
| 1       | 0/10              | Configuration Mode                                                | ON          | Enables configuration using DIP switches                       |
|         |                   |                                                                   | OFF         | Disables configuration using DIP switches                      |
|         | Se                | Aspirator Speed                                                   | ON          | LOW aspirator speed                                            |
| 2       | 3                 |                                                                   | OFF         | HIGH aspirator speed                                           |
|         |                   | Alarm Level (See Table 14-2 for more information on Alarm Levels) | ON, ON      | HIGH: Alarm = Level 1, Action = Level 0                        |
| 3 and 4 | 3 4<br>3 4<br>3 4 |                                                                   | ON, OFF     | MEDIUM: Alarm = Level 3, Action = Level 2                      |
|         |                   |                                                                   | OFF, ON     | MEDIUM: Alarm = Level 3, Action = Level 2                      |
|         |                   |                                                                   | OFF,<br>OFF | LOW: Alarm = Level 5, Action = Level 4                         |
| 5       | 86                | Alarm/Action/Fault                                                | ON          | Unlatched                                                      |
| 3       |                   |                                                                   | OFF         | Latched                                                        |
|         |                   | Alarm Mode                                                        | ON          | Instant Fire                                                   |
| 6       |                   |                                                                   | OFF         | Cumulative, Action delay 30 seconds and Alarm delay 30 seconds |
| 7       | ***               | Flow Fault Threshold                                              | ON          | Apply flow fault criteria policy ± 20% reference flow          |
|         |                   |                                                                   | OFF         | ± 50%                                                          |
|         | <b>*</b>          | Flow Fault Delay                                                  | ON          | 30 seconds                                                     |
| 8       |                   |                                                                   | OFF         | 300 seconds                                                    |
| 9       |                   | Detector Orientation                                              | ON          | Upright                                                        |
|         |                   |                                                                   | OFF         | Inverted                                                       |
| 10      | * **              | Divisional Functionality                                          | ON          | Disabled                                                       |
| 10      |                   | Bluetooth Functionality                                           | OFF         | Enabled                                                        |

Table 14-2: Smoke Levels Description

| Alarm | Description        | Obscuration Detected        |                | Notes                                                                                                                                                                                                                  |  |
|-------|--------------------|-----------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Level |                    | Imperial Metric Units Units |                |                                                                                                                                                                                                                        |  |
| 1     | EEPROM error       |                             |                |                                                                                                                                                                                                                        |  |
| 5-8   | Photo sample fault |                             |                | s/a 0 = 5 light compensation fail<br>s/a 0 = 6 photo offset low or high<br>s/a 0 = 7 light start minus dark start ><br>max<br>s/a 0 = 8 negative photo sample<br>s/a 0 = 9 photo sample interrupted or<br>ADC time/out |  |
| 40 50 | Normal             |                             |                | Drift Level: 50 =clean, 40 =100% drift                                                                                                                                                                                 |  |
| 110   | Alarm level 0      | 70% of level 1              | 70% of level 1 | Action if Alarm level configured as HIGH in Out of box Mode                                                                                                                                                            |  |
| 120   | Alarm level 1      | 0.02 % obs/ft               | 0.07 % obs/m   | Alarm if Alarm level configured as HIGH in Out of box Mode                                                                                                                                                             |  |
| 130   | Alarm level 2      | 0.03 % obs/ft               | 0.10 % obs/m   | Action if Alarm level configured as MEDIUM in Out of box Mode                                                                                                                                                          |  |
| 140   | Alarm level 3      | 0.05 % obs/ft               | 0.16 % obs/m   | Alarm if Alarm level configured as MEDIUM in Out of box Mode                                                                                                                                                           |  |
| 150   | Alarm level 4      | 0.10 % obs/ft               | 0.33 % obs/m   | Action if Alarm level configured as LOW in Out of box Mode                                                                                                                                                             |  |
| 160   | Alarm level 5      | 0.20 % obs/ft               | 0.66 % obs/m   | Alarm if Alarm level configured as LOW in Out of box Mode                                                                                                                                                              |  |
| 170   | Alarm level 6      | 0.50 % obs/ft               | 1.64 % obs/m   | Not approved under EN54-20 regulatory                                                                                                                                                                                  |  |
| 180   | Alarm level 7      | 1.00 % obs/ft               | 3.28 % obs/m   | Not approved under EN54-20 regulatory                                                                                                                                                                                  |  |
| 190   | Alarm level 8      | 1.50 % obs/ft               | 4.92 % obs/m   | Not approved under EN54-20 regulatory                                                                                                                                                                                  |  |
| 200   | Alarm level 9      | 2.00 % obs/ft               | 6.56 % obs/m   | Not approved under EN54-20 regulatory                                                                                                                                                                                  |  |



**Note:** The HIGH, MEDIUM, and LOW levels correspond to the settings of DIP Switches 3 and 4.

#### About Faults, Alerts, and Alarms

The unit can signal two types of abnormal conditions: alerts (minor issues) and faults (major issues). Faults are indicated by the FAULT LED showing yellow, either blinking or steady ON. Some alerts or faults are common to both channels (e.g. aspirator fault), whilst others are only related to channel 1 or channel 2 for 2-channel devices (e.g. sensing head fault). If one or more faults occur, the FAULT LED indicates the most important fault, and the fault relays are activated accordingly. Faults can be either latched or not, based on configuration. If latched, the user must manually clear the fault by pressing the RESET button. User can configure (EXTENDED mode) a delay between fault condition and fault relay activation (default is 60 seconds) during which activation is aborted if the fault condition terminates. In 2 channel models, if a fault is

related to both channels both relays are activated. The device logs all alerts and faults as well as the exit from fault or alert conditions. Alarms are raised when smoke levels exceed the limits established by the device configuration.

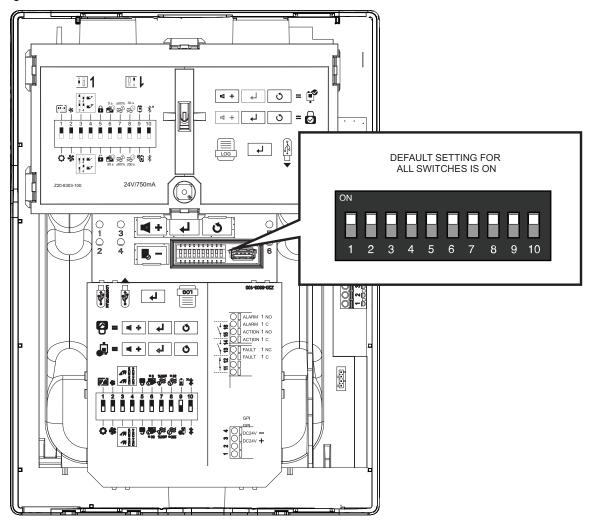



Figure 14-2: Configuration DIP Switches

# 14.3 Changing Configuration Mode

There are two configuration modes for the device. In DIP SWITCH Mode the operational parameters are determined by the position of the DIP switches. In EXTENDED mode the operational parameters are determined by the EEPROM. EXTENDED mode is typically used for custom installations. Follow these steps to switch between the two modes:

| Action                                                                                          | Button         | LED Display                                                             | Description                                                                                                       |
|-------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| While the unit is in WAIT mode, long press the ENTER button.                                    | Long<br>Press  | 1 3                                                                     | All LEDs will flash yellow and then go out.                                                                       |
| Enter the current passcode.                                                                     |                |                                                                         | After passcode is entered correctly, all LEDs will show green. See section 13 Authenticating - Entering Passcode. |
| Change DIP switch settings as desired.                                                          |                |                                                                         | See section 14 Configuration for details.                                                                         |
| Increment current hour<br>by 30 minuets (for a<br>max of +14 hours)                             | Short<br>Press | $ \begin{array}{c cccc}  & & & & & & & & \\  & & & & & & & \\  & & & &$ | LED 1 blinks green<br>every time user<br>presses the button.                                                      |
| Decrement current hour by 30 minuets (for a max of -14 hours).                                  | Short<br>Press |                                                                         | LED 3 blinks green every time user presses the button.                                                            |
| Press the ENTER button. The new configuration is saved and the device exits configuration mode. | Long<br>Press  |                                                                         | The device will restart with the new configuration active.                                                        |

## 15 Test Mode

In TEST mode, the device will perform a self-test. As tests are executed the user must confirm each step of the test before it continues.

Follow these steps to enter TEST mode execute the self-test.

**Note:** If any of these steps do NOT complete correctly, press the SILENCE/+ button to indicate FAIL condition for the test step.

| Action                                                           | Button         | Action(s) | Description                                                                                                            |
|------------------------------------------------------------------|----------------|-----------|------------------------------------------------------------------------------------------------------------------------|
| While the device is in WAIT mode, long press the TEST button. /+ | Short<br>Press |           | All LEDs will show red in the following sequence: 1, 3, 5, 6, 4, 2.                                                    |
| Press the TEST button to confirm test PASS.                      | Short<br>Press |           | All LEDs will show green in the following sequence: 1, 3, 5, 6, 4, 2.                                                  |
| Press the TEST button to confirm test PASS.                      | Short<br>Press | 1 3       | Buzzer will sound for 1 second and all LEDs will show yellow in the following sequence: 1, 3, 5, 6, 4, 2.              |
| Press the TEST button to confirm test PASS.                      | Short<br>Press |           | LED 5 shows green, indicating normal condition (no action/alarms or faults).                                           |
| Press the TEST button to confirm test PASS.                      | Short<br>Press |           | LED 3 shows red to indicate Action condition on Channel 1.                                                             |
| Press the TEST button to confirm test PASS.                      | Short<br>Press |           | LED 6 shows yellow to indicate Fault condition on Channel 1.                                                           |
| Press the TEST button to confirm test PASS.                      | Short<br>Press |           | LED 4 shows red to indicate Action condition on Channel 2. (Test step must be completed even on Single Channel units.) |
| Press the TEST button to confirm test PASS.                      | Short<br>Press |           | LED 2 shows red to indicate Alarm condition on Channel 2. (Test step must be completed even on Single Channel units.)  |

| Action                                                                                                              | Button                  | Action(s) | Description                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Press the TEST button to confirm test PASS.                                                                         | Short<br>Press          |           | LED 6 shows yellow to<br>indicate Fault condition<br>on Channel 2. (Test<br>step must be<br>completed even on<br>Single Channel units.)                                           |
| Press the TEST button to confirm test PASS.                                                                         | Short<br>Press          |           | All LEDs show green if all tests PASS.  All LEDs show red if any step in FAILs.                                                                                                   |
| Press the RESET button to exit TEST mode or Insert a USB drive and press the ENTER button to download test results. | Short Press Short Press |           | The results of the test will be written to the USB drive with the filename DIAGTEST.txt and the device will beep to provide an audible confirmation that the process is complete. |

#### **DIAGTEST.TXT File Format**

The DIAGTEST.TXT file will contain the result of the test in the format shown below.

| 1CH                        | 2CH                        |
|----------------------------|----------------------------|
| SELF_TEST_RED_LIGHT_PASSED | SELF_TEST_RED_LIGHT_PASSED |
| SELF_TEST_GRE_LIGHT_PASSED | SELF_TEST_GRE_LIGHT_PASSED |
| SELF_TEST_YEL_LIGHT_PASSED | SELF_TEST_YEL_LIGHT_PASSED |
| SELF_TEST_NORMALSTA_PASSED | SELF_TEST_NORMALSTA_PASSED |
| SELF_TEST_ACTIO_CH1_PASSED | SELF_TEST_ACTIO_CH1_PASSED |
| SELF_TEST_ALARM_CH1_PASSED | SELF_TEST_ALARM_CH1_PASSED |
| SELF_TEST_FAULT_CH1_PASSED | SELF_TEST_FAULT_CH1_PASSED |
| SELF_TEST_ACTIO_CH2_NOTAVA | SELF_TEST_ACTIO_CH2_PASSED |
| SELF_TEST_ALARM_CH2_NOTAVA | SELF_TEST_ALARM_CH2_PASSED |
| SELF_TEST_FAULT_CH2_NOTAVA | SELF_TEST_FAULT_CH2_PASSED |

## 16 Normalize

Normalize procedure is used to adjust the flow reference to the current flow aspirated by the device.

**Note:** Before starting the NORMALIZE procedure, the pipe system should be connected and checked. There can be no blockages, open pipes, dirty filters, dust, or other obstructions. The device should be working for 1 minute and air flow must be stable.

| Action                                                                                           | Button        | LED Display                                                                                                                        |                   | Description                                                              |
|--------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|
| While the device is in WAIT mode, long press the SILENCE/+ button. (Enter the current passcode.) | Long<br>Press | 1 3 5                                                                                                                              | olink yellow      | LED 6 will flash red<br>until the procedure is<br>complete.              |
| Once the NORMALIZE procedure is complete, the                                                    |               | $ \begin{array}{cccc} \bigcirc & \bigcirc & \bigcirc \\ 1 & 3 & & 5 \\ \bigcirc & \bigcirc & \bigcirc \\ 2 & 4 & & 6 \end{array} $ | i<br>  I          | LED 6 will show green if the NORMALIZE procedure completed successfully. |
| buzzer will sound for 0.5 seconds. LED 6 will indicate the result.                               |               | 1 3 5                                                                                                                              | olink yellow<br>t | LED 6 will show red if<br>the NORMALIZE<br>procedure was<br>unsucessful. |
| Unit will return to WAIT mode.                                                                   |               |                                                                                                                                    |                   |                                                                          |

**Note:** If the cover is closed during the NORMALIZE procedure, then the procedure is aborted and the device will return to WAIT mode.

# 17 Resetting Alarms and Faults

To reset any alarm and/or fault conditions press the RESET button. You will be prompted to enter the passcode. Once the passcode has been successfully entered, all latched alarms and faults are reset (both LEDs and relays) and the device returns to WAIT mode.

## **18 EEPROM Factory Reset**

To perform a reset to the default EEPROM configuration, perform the following steps.

| Action                                                              | Button        | LED Display                                                                                                                    | Description                                                                                                                                   |
|---------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Open cover and allow device to enter SERVICE Mode (60 second wait). |               | $ \begin{array}{ccccc} \bigcirc & \bigcirc & & \\ 1 & 3 & & 5 \\ \bigcirc & \bigcirc & & \bigcirc \\ 2 & 4 & & 6 \end{array} $ | LED 5 will flash red when the device enters SERVICE Mode.                                                                                     |
| Set all DIP Switches to ON position.                                |               |                                                                                                                                |                                                                                                                                               |
| Long press the RESET button.                                        | Long<br>Press |                                                                                                                                | LED 5 will go out and LEDs 1, 2, 3, and 4 will flash yellow, and the buzzer will sound to indicate that the reset procedure has been started. |
| Enter the passcode.                                                 |               |                                                                                                                                | Once the passcode is entered, the device will be reset to the EEPROM factory settings.  Note: The passcode is NOT changed.                    |

All LEDs will show green for 2 seconds to indicate the reset was successful.

If the LEDs show red, repeat the process by long pressing the RESET button again. This can happen in an undervoltage situation.

**Note:** If the reset procedure fails a second time the device is corrupted and must be replaced with a new unit.

# 19 Passcode Recovery

In the event the passcode has been lost, perfom the following steps to recover the passcode .

| Action                                                              | Button        | LED Displa                                                                                       | ay | Description                                                                                                                                                                 |
|---------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Open cover and allow device to enter SERVICE Mode (60 second wait). |               | $ \begin{array}{cccc} \bigcirc & \bigcirc \\ 1 & 3 \\ \bigcirc & \bigcirc \\ 2 & 4 \end{array} $ | 5  | LED 5 will flash red when<br>the device enters<br>SERVICE Mode.                                                                                                             |
| Plug a formatted USB drive into the port.                           |               |                                                                                                  |    |                                                                                                                                                                             |
| Long press the ENTER button.                                        | Long<br>Press |                                                                                                  |    | LED 5 will go out and<br>LEDs 1, 2, 3, and 4 will<br>flash yellow, and the<br>buzzer will sound to<br>indicate that the reset file<br>has been written to the<br>USB drive. |

Email the file from the USB drive to your device supplier. The passcode will be recovered by Honeywell Customer Support and will be communicated by the vendor back to you via email or telephone.

## 20 Maintenance

### 20.1 Sensor Replacement



Warning: Workin

Working on the FAAST FLEX with power applied can result in electrical shock hazard. Input power must be disconnected from the device before any performing any maintenance. Remove power from the device by opening the appropriate circuit breaker(s) or turning the power supply off

1. Remove cover (see Figure 7-4).

**Note:** The sensor cover and the rubber gasket may stick together when removing the sensor cover. Some effort may be required to pull the sensor cover off.

- 2. Using a small screwdriver, release six locking tabs, and remove Sensor Cover (see Figure 20-1).
- 3. Press two latches inward to release sensor, and remove Sensor.
- 4. Install replacement Sensor.
- 5. While pressing down on Sensor, push two latches outward to lock Sensor in place.
- 6. Replace Sensor Cover and press down to engage locking tabs.
- 7. Check and ensure that all six tabs are secured.
- 8. Replace cover.

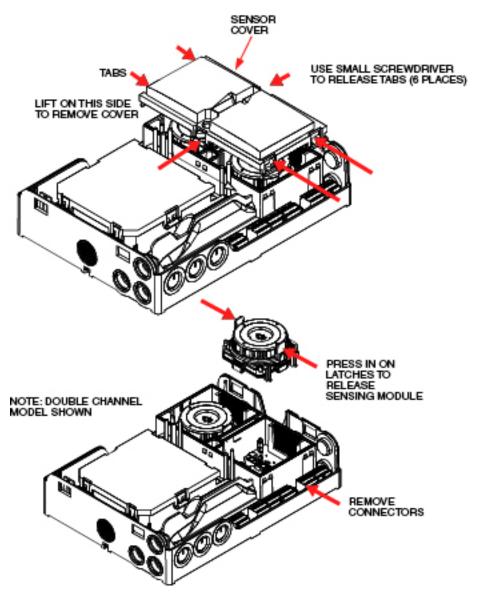



Figure 20-1: Sensor Replacement

## 20.2 Aspirator Replacement



Warning:

Working on the FAAST FLEX with power applied can result in electrical shock hazard. Input power must be disconnected from the device before any performing any maintenance. Remove power from the device by opening the appropriate circuit breaker(s) or turning the power supply off.

- 1. Remove cover (see Figure 7-4).
- 2. Using a small screwdriver, release six locking tabs, and remove Aspirator Cover (see Figure 20-2).

**Note:** Take note of the orientation of the Aspirator and the cable when removing.

- 3. Disconnect aspirator connector and remove Aspirator.
- 4. Connect aspirator connector to header, and install replacement Aspirator.
- 5. Replace Aspirator Cover and press down to engage locking tabs.
- 6. Check and ensure that all six tabs are secured.
- 7. Replace cover.

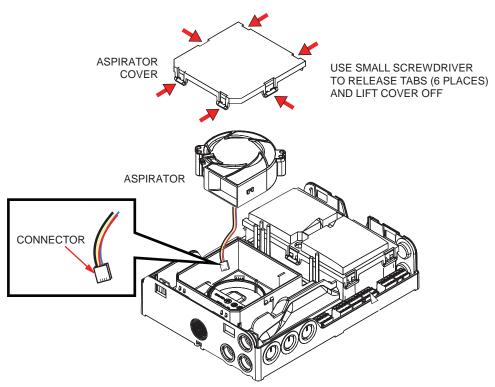



Figure 20-2: Aspirator Replacement

### 20.3 Filter Replacement

The FAAST FLEX has two filters to prevent dirt and debris from entering the Sensors, and a third filter on the air outlet. Filters should be replaced annually to ensure proper operation.



Warning:

Working on the FAAST FLEX with power applied can result in electrical shock hazard. Input power must be disconnected from the device before any performing any maintenance. Remove power from the device by opening the appropriate circuit breaker(s) or turning the power supply off.

**Note:** In harsh operating environments (excessive dust, insects, exposure to chemicals) the filter screens may need to be replaced more frequently.

During maintenance, the sensors should be protected whenever the filters are removed. The shipping box is designed with four cardboard protection tabs that can be removed and inserted in place of the filters to provide protection. See Figure 20-3.

- 1. Remove cover (see Figure 7-4).
- 2. Using a small screwdriver, release six locking tabs, and remove Sensor Cover (see Figure 20-3).
- 3. Using a small screwdriver, release six locking tabs, and remove Aspirator Cover.
- 4. Remove Channel 1 Filter, Channel 2 Filter, and Outlet Filter.
- 5. Replace Aspirator Cover and press down to engage locking tabs.
- 6. Replace Sensor Cover and press down to engage locking tabs.
- 7. Replace cover.

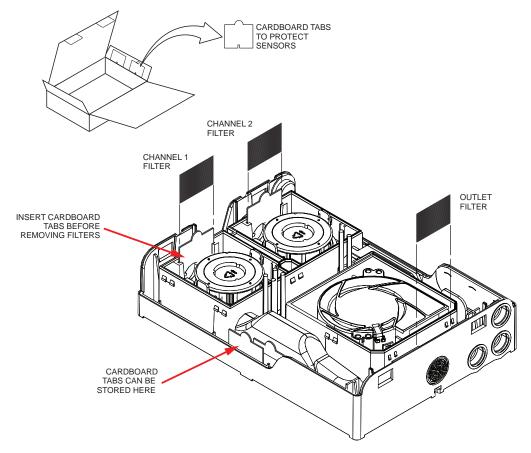



Figure 20-3: Filter Replacement

## 21 Event Logs

Follow these steps to download event log files to a USB drive:

**Note:** The USB drive must be formatted in FAT32 format, and must be completely empty, and the volume name must be no more than seven characters.

- 1. While the device is in WAIT mode, press the ENTER button and insert the USB drive. The device will sound a buzzer once the LOGREPOR.TXT file is downloaded.
- 2. Once the log file is written, the FAULT LED will show red for negative feedback or green for positive feedback. Remove the USB drive. The USB drive will contain a new log file, named LOGREPOR.TXT.

#### **Data Log Header**

Figure 21 shows the header of the LOGREPOR.TXT log file. The table below describes the information contained the log.

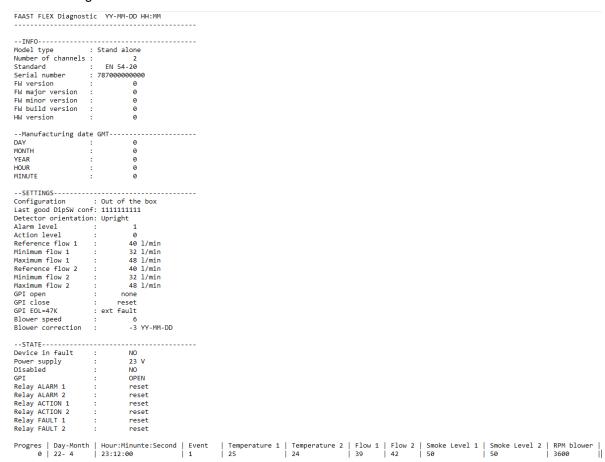



Figure 21-1: Data Log Header

Table 21-1: LOGREPOR.TXT File Structure

| Event | Description       |    | Description                         |
|-------|-------------------|----|-------------------------------------|
| 0     | No event          | 21 | Normalize failed, flow out of range |
| 1     | Power on          | 22 | Reset started                       |
| 2     | Cover opened      | 23 | Change configuration request        |
| 3     | Cover closed      | 24 | Log requested                       |
| 4     | Password entry    | 25 | Log downloaded                      |
| 5     | Password modified | 26 | China silence alarm                 |
| 6     | Password correct  | 27 | Disable Buzzer Button EN            |

| Event | Description                                                 | Event | Description                                             |
|-------|-------------------------------------------------------------|-------|---------------------------------------------------------|
| 7     | Password incorrect                                          | 28    | Open cover to confirm unauthorized change configuration |
| 8     | To Disable                                                  | 29    | To Protection (overvolt)                                |
| 9     | Exit from Disable                                           | 30    | To Normal                                               |
| 10    | Test started EN                                             | 31    | To Wait                                                 |
| 11    | Test completed EN                                           | 32    | To Service                                              |
| 12    | Test log written EN                                         | 33    | Pairing tentative                                       |
| 13    | China test started                                          | 34    | Pairing successfully completed                          |
| 14    | China test completed                                        | 35    | E2P factory restore success                             |
| 15    | GPI Reset device                                            | 36    | E2P factory restore failed                              |
| 16    | GPI To Disable                                              | 37    | Password recovery                                       |
| 17    | GPI Exit from Disable                                       | 38    | PID STARTED                                             |
| 18    | Normalize start                                             | 39    | PID over                                                |
| 19    | Normalize successfully completed                            | 40    | Change configuration completed                          |
| 20    | Normalize failed, flow not stable                           | 41    | Exit from Configuration after timeout                   |
| 42    | Exit from Password entering for timeout                     |       |                                                         |
| 43    | Exit from Password change for timeout                       |       |                                                         |
| 44    | Hour changed                                                |       |                                                         |
| 45    | Exit from Disable after timeout                             |       |                                                         |
| 101   | Configuration data not available or corrupted <sup>1</sup>  |       |                                                         |
| 102   | EEPROM not readable <sup>1</sup>                            |       |                                                         |
| 103   | Bluetooth module error                                      | 1103  | Exit from bluetooth module error                        |
| 104   | GPI external fault <sup>2</sup>                             | 1104  | Exit from GPI external fault <sup>2</sup>               |
| 105   | Ch1 ultrasonic faulty circuit                               | 1105  | Exit from Ch1 ultrasonic faulty circuit                 |
| 106   | Ch1 sensing head communication fault                        | 1106  | Exit from Ch1 sensing head communication fault          |
| 107   | Aspirator is faulty                                         | 1107  | Exit from Aspirator faulty                              |
| 108   | Ch1 flow initialization failed                              | 1108  | Exit from ch1 flow initialization failed                |
| 109   | Ch1 flow is below the min limit                             | 1109  | Exit from ch1 Low flow fault                            |
| 110   | Ch1 flow is above the max limit                             | 1110  | Exit from ch1 High flow fault                           |
| 111   | Ch2 ultrasonic faulty circuit                               | 1111  | Exit from ch2 ultrasonic faulty circuit                 |
| 112   | Ch2 sensing head communication fault                        | 1112  | Exit from ch2 sensing head communication fault          |
| 113   | Ch2 flow initialization failed                              | 1113  | Exit from ch2 flow initialization failed                |
| 114   | Ch2 flow is below the min limit                             | 1114  | Exit from ch2 Low flow fault                            |
| 115   | Ch 2 flow is above the max limit                            | 1115  | Exit from ch2 High flow fault                           |
| 116   | Power if over 31V <sup>1</sup>                              | 1116  |                                                         |
| 117   | Discrepancy between dip-switches position and device config | 1117  | Exit from EEprom config diff dip-sw fault               |

<sup>&</sup>lt;sup>1</sup>Switch into PROTECTION mode

<sup>&</sup>lt;sup>2</sup>If GPI is configured as FAULT

| Event | Description                                     | Event | Description                                |
|-------|-------------------------------------------------|-------|--------------------------------------------|
| 118   | Data Flash fault <sup>1</sup>                   |       |                                            |
| 119   | EEPROM Checksum fault <sup>2</sup>              |       |                                            |
| 120   | Ch1 dirt fault <sup>3</sup>                     | 1120  | Exit from Ch1 dirt fault <sup>4</sup>      |
| 121   | Ch2 dirt fault <sup>3</sup>                     | 1121  | Exit from Ch2 dirt fault <sup>4</sup>      |
| 201   | RTC cannot be read or set                       | 1201  | Exit from RTC alert                        |
| 202   | RTC data is not consistent                      | 1202  | Exit from Invalid time base alert          |
| 203   | Ch1 Temperature is above the nominal threshold  | 1203  | Exit from ch1 High temperature alert       |
| 204   | Ch1 Temperature is below the nominal threshold  | 1204  | Exit from ch1 Low temperature alert        |
| 205   | Ch2 Temperature is above the nominal threshold  | 1205  | Exit from ch2 High temperature alert       |
| 206   | Ch2 Temperature is below the nominal threshold  | 1206  | Exit from ch2 Low temperature alert        |
| 207   | Supply voltage below 21V                        | 1207  | Exit from Low power alert                  |
| 208   | Ch1 dirt alert no.1 <sup>4</sup>                | 1208  | Exit from ch1 dirt alert no.1 <sup>4</sup> |
| 209   | Ch1 dirt alert no.2 <sup>5</sup>                | 1209  | Exit from ch1 dirt alert no.2 <sup>5</sup> |
| 210   | Ch2 dirt alert no.1 <sup>4</sup>                | 1210  | Exit from ch2 dirt alert no.1 <sup>4</sup> |
| 211   | Ch2 dirt alert no.2 <sup>5</sup>                | 1211  | Exit from ch2 dirt alert no.2 <sup>5</sup> |
| 212   | Supply voltage below EEPROM working voltage 19V | 1212  | Exit from No Safe Write EEPROM             |
| 301   | Action ch1                                      | 1301  | Exit from Action ch1                       |
| 302   | Alarm ch1                                       | 1302  | Exit from Alarm ch1                        |
| 303   | Action ch2                                      | 1303  | Exit from Action ch2                       |
| 304   | Alarm ch2                                       | 1304  | Exit from Alarm ch2                        |

<sup>&</sup>lt;sup>1</sup>Switch into PROTECTION mode

<sup>&</sup>lt;sup>2</sup>Switch into SERVICE mode

<sup>&</sup>lt;sup>3</sup>Drift level 100%

<sup>&</sup>lt;sup>4</sup>Drift level 40%

<sup>&</sup>lt;sup>5</sup>Drift level 70%

#### Log example and interpretation

HEADER reading for salient data: document downloaded from device in date Sept. 26 2021, is a double channel manufactured in date Sept 21 2021 following EN54-20 standard, DIP switches configuration all 1, reference flow 97 l/min, GPI open.

| INFO                                                                     |                                 |          |   |  |  |
|--------------------------------------------------------------------------|---------------------------------|----------|---|--|--|
| Model type :                                                             | Stand alo                       | one      |   |  |  |
| Number of channels :                                                     | 2                               |          |   |  |  |
| Standard :                                                               | EN 54-20                        |          |   |  |  |
| Standard :<br>Serial number :                                            | 00000000                        | 0000     |   |  |  |
| FW version :<br>FW major version :                                       | 2.1.0                           |          |   |  |  |
| FW major version :                                                       | 0                               |          |   |  |  |
| FW minor version :                                                       | 0                               |          |   |  |  |
| FW minor version :<br>FW build version :                                 | 0                               |          |   |  |  |
| HW version :                                                             | 1                               |          |   |  |  |
| Manufacturing date                                                       | GMT                             |          |   |  |  |
| DAY : 10                                                                 |                                 |          |   |  |  |
| MONTH : 09                                                               |                                 |          |   |  |  |
| YEAR : 2021                                                              |                                 |          |   |  |  |
| HOUR : 08                                                                |                                 |          |   |  |  |
| MINUTE : 25                                                              |                                 |          |   |  |  |
| SETTINGS                                                                 |                                 |          |   |  |  |
| Configuration :<br>Last good DipSW conf:<br>Detector orientation:        | Out of t                        | the box  |   |  |  |
| Last good DipSW conf:                                                    | 11111111                        | 111      |   |  |  |
| Detector orientation:                                                    | Upright                         |          |   |  |  |
| Alarm level :<br>Action level :                                          | 1                               |          |   |  |  |
| Action level :                                                           | 0                               |          |   |  |  |
| Reference flow 1 :                                                       | 97                              | 1/min    |   |  |  |
| Maximum flow 1 :  Maximum flow 1 :  Mererence flow 2 :  Minimum flow 2 : | 83                              | 1/min    |   |  |  |
| Maximum flow 1 :                                                         | 111                             |          |   |  |  |
| Keterence tlow 2 :                                                       | 9/                              | 1/min    |   |  |  |
| Minimum +low 2 :                                                         | 111                             | 1/min    |   |  |  |
| maximum flow 2 :                                                         | 0.0                             | l/min    |   |  |  |
| GPI open :                                                               | _                               |          |   |  |  |
| GPI close :                                                              |                                 |          |   |  |  |
| GPI EOL :                                                                |                                 |          |   |  |  |
| Blower speed :                                                           |                                 |          | _ |  |  |
| Blower correction :                                                      | 0                               | 00-00-06 | ) |  |  |
| STATE                                                                    |                                 |          |   |  |  |
| Device in fault :                                                        | NO                              | v        |   |  |  |
| Power supply :<br>Disabled :                                             | 23.3                            | V        |   |  |  |
| visabled :                                                               | NO                              |          |   |  |  |
| GPI :                                                                    | OPEN                            |          |   |  |  |
| Relay ALARM 1 :<br>Relay ALARM 2 :                                       | reset                           |          |   |  |  |
| Relay ALARM 2 :                                                          | OPEN<br>reset<br>reset<br>reset |          |   |  |  |
| Relay ACTION 1 :                                                         | reset                           |          |   |  |  |
| Relay ACTION 1 :<br>Relay ACTION 2 :<br>Relay FAULT 1 :                  | reset                           |          |   |  |  |
| Relay FAULT 1 :                                                          | set                             |          |   |  |  |
| Relay FAULT 2 :                                                          | set                             |          |   |  |  |
|                                                                          |                                 |          |   |  |  |

| Р | rogres   Day-Month | Hour:Minute:Second | Event | Temperature 1 | Temperature 2 | Flow 1 | Flow 2 | Smoke Level 1 | Smoke Level 2 | RPM blower |
|---|--------------------|--------------------|-------|---------------|---------------|--------|--------|---------------|---------------|------------|
|   | 1 24-10            | 10:30:00           | 1     | 24            | 24            | 97     | 95     | 50            | 50            | 3300       |
|   | 2 25-10            | 10:48:13           | 302   | 24            | 24            | 97     | 95     | 200           | 50            | 3300       |
|   | 3   25-10          | 10:53:24           | 1302  | 24            | 24            | 97     | 95     | 50            | 50            | 3300       |
|   | 4   26-10          | 11:00:02           | 2     | 24            | 24            | 97     | 95     | 50            | 50            | 3300       |
|   | 5   26-10          | 11:01:06           | 24    | 24            | 24            | 97     | 95     | 50            | 50            | 3300       |
|   | 6   26-10          | 11:11:10           | 25    | 24            | 24            | 97     | 95     | 50            | 50            | 3300       |

Figure 21-2: Sample Event Log

#### **LOG Desc**

Row 1) device power ON

Row 2) Alarm CH1 smoke level passed from 50 to 200,

Row 3) Exit from alarm CH1

Row 4) Front cover opened by operator

Row 5) Log requested -pushed button enter-

Row 6) Log downloaded on USB stick.

## **Sensing Head**

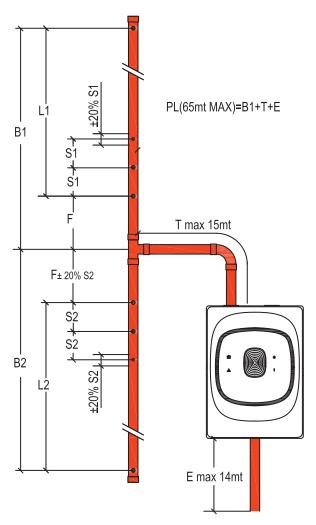
Figure 21-3: Smoke Levels Description

| Alarm | Description                                    | Obscuration Detected |                | Notes                                                         |
|-------|------------------------------------------------|----------------------|----------------|---------------------------------------------------------------|
| Level |                                                | Imperial Units       | Metric Units   |                                                               |
| 1     | EEPROM error                                   |                      |                |                                                               |
| 5     | light<br>compensation<br>fail                  |                      |                |                                                               |
| 6     | photo offset low or high                       |                      |                |                                                               |
| 7     | light start minus<br>dark start > max          |                      |                |                                                               |
| 8     | negative photo sample                          |                      |                |                                                               |
| 9     | photo sample<br>interrupted or<br>ADC time/out |                      |                |                                                               |
| 40 50 | Normal                                         |                      |                | Drift Level: 50 =clean, 40 =100% drift                        |
| 110   | Alarm level 0                                  | 70% of level 1       | 70% of level 1 | Action if Alarm level configured as HIGH in Out of box Mode   |
| 120   | Alarm level 1                                  | 0.02 % obs/ft        | 0.07 % obs/m   | Alarm if Alarm level configured as HIGH in Out of box Mode    |
| 130   | Alarm level 2                                  | 0.03 % obs/ft        | 0.10 % obs/m   | Action if Alarm level configured as MEDIUM in Out of box Mode |
| 140   | Alarm level 3                                  | 0.05 % obs/ft        | 0.16 % obs/m   | Alarm if Alarm level configured as MEDIUM in Out of box Mode  |
| 150   | Alarm level 4                                  | 0.10 % obs/ft        | 0.33 % obs/m   | Action if Alarm level configured as LOW in Out of box Mode    |
| 160   | Alarm level 5                                  | 0.20 % obs/ft        | 0.66 % obs/m   | Alarm if Alarm level configured as LOW in Out of box Mode     |
| 170   | Alarm level 6                                  | 0.50 % obs/ft        | 1.64 % obs/m   | Not approved under EN54-20 regulatory                         |
| 180   | Alarm level 7                                  | 1.00 % obs/ft        | 3.28 % obs/m   | Not approved under EN54-20 regulatory                         |
| 190   | Alarm level 8                                  | 1.50 % obs/ft        | 4.92 % obs/m   | Not approved under EN54-20 regulatory                         |
| 200   | Alarm level 9                                  | 2.00 % obs/ft        | 6.56 % obs/m   | Not approved under EN54-20 regulatory                         |

## 22 Piping Design Guidelines

Proper operation of the FAAST FLEX is highly dependent on proper design and installation of the inlet piping. For the detector to perform at maximum efficiency the inlet piping must collect ambient air from the protected space and deliver it to the detector with unobstructed airflow. The factors that impact this process include the following:

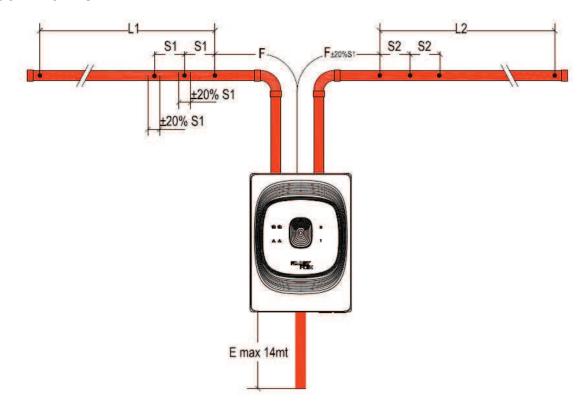
- · Length and diameter of inlet piping
- · Angle and location of bends in inlet piping
- · Length of exhaust piping
- · Location, diameter and spacing of air collection holes
- Aspirator speed
- Alarm Levels
- Presence/absence of filter


The following figures illustrate the various parameters used in the calculations provided in the Piping Tables on the following pages:

#### Single Channel:

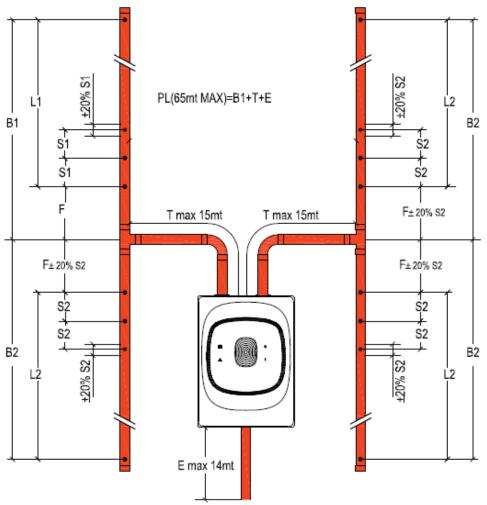


| Rules                                                          |    |                                     |
|----------------------------------------------------------------|----|-------------------------------------|
| Pipe Length with low aspirator speed with high aspirator speed | PL | max 50m<br>max 80m                  |
| Exhaust                                                        | E  | max 29m                             |
| First hole position                                            | F  | 30m - E<br>min 1m                   |
| Last hole position                                             | L  | PL - E - F                          |
| Step between holes                                             | S  | L / (Number of holes-1)<br>min 2.5m |
| Hole position deviation from nominal position                  |    | S ± 20%                             |
| 45° or 90° Bend corresponds to a straight pipe length of       |    | 0.3m                                |
| T junction corresponds to a straight pipe length of            |    | 1.2m                                |
| Clips distance                                                 |    | max 1.5m                            |
| Π                                                              |    | max 90s                             |


Figure 22-1: Piping Design Parameters - I Pipe



| Rules                                                           |                |                                             |
|-----------------------------------------------------------------|----------------|---------------------------------------------|
| Pipe Length with low aspirator speed with high aspirator speed  | PL (E+T+B1)    | max 45m<br>max 65m                          |
| Exhaust                                                         | E              | max 14m                                     |
| T-junction position                                             | Т              | max 15m - E                                 |
| Branch 1 Length                                                 | B1             | PL-T-E                                      |
| Branch 2 Length                                                 | B2             | B1-10%÷B1                                   |
| First hole position, Branch 1                                   | F              | max 30m - E<br>min 1.25m                    |
| First hole position, Branch 2                                   | F2             | F ± 20%*S2<br>min 1.25m                     |
| Last hole position                                              | L1, L2         | PL - E - F - Fx                             |
| Step between holes                                              | S1, S2         | Lx / (Number of branch holes-1)<br>min 2.5m |
| Hole position deviation from nominal position                   |                | Sx ± 20%                                    |
| 45° or 90° Bend corresponds to a straight pipe length of        |                | 0.3m                                        |
| T junction corresponds to a straight pipe length of 1.2m on the | ne common bran | ch                                          |
| Clips distance                                                  |                | max 1.5m                                    |
| TT                                                              |                | max 90s                                     |


Figure 22-2: Piping Design Parameters - U Pipe

## **Dual Channel:**



| Rules                                                           |                |                                    |
|-----------------------------------------------------------------|----------------|------------------------------------|
| Pipe Length with low aspirator speed with high aspirator speed  | PL             | max 50m<br>max 80m                 |
| Exhaust                                                         | E              | see table row B                    |
| First hole position, Chamber 1                                  | F              | max (see table row A) -E<br>min 1m |
| Last hole position, Chamber 1                                   | L1             | PL - T - F                         |
| Last hole position, Chamber 2                                   | L2             | L1-10%÷L1                          |
| First hole position, Chamber 2                                  | F2             | F ± 20%*S2                         |
| Step between holes                                              | S1, S2         | Lx / (Number of branch holes-1)    |
| Hole position deviation from nominal position                   |                | Sx ± 20%                           |
| 45° or 90° Bend corresponds to a straight pipe length of        |                | 0.3m                               |
| T junction corresponds to a straight pipe length of 1.2m on the | he common brar | nch                                |
| Clips distance                                                  |                | max 1.5m                           |
| TT                                                              |                | max 90s                            |

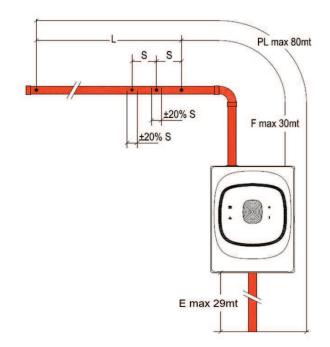
Figure 22-3: Piping Design Parameters - I Pipe



| Dulas                                                         |                |                                             |
|---------------------------------------------------------------|----------------|---------------------------------------------|
| Pipe Length with low aspirator speed                          | PL (E+T+B1)    | max 45m                                     |
| with high aspirator speed                                     | PL (E+1+B1)    | max 65m                                     |
| Exhaust                                                       | E              | see table row C                             |
| T-junction position                                           | Т              | max (see table row A) -E                    |
| Branch 1 Length                                               | B1             | PL-T-E                                      |
| Branch 2 Length                                               | B2             | B1-10%÷B1                                   |
| First hole position, Branch 1                                 | F              | max (see Table row B) - E - T<br>min 1.25m  |
| First hole position, Branch 2                                 | F2             | F ± 20%*S2<br>min 1.25m                     |
| Last hole position                                            | L1, L2         | PL - E - F - Fx                             |
| Step between holes                                            | S1, S2         | Lx / (Number of branch holes-1)<br>min 2.5m |
| Hole position deviation from nominal position                 |                | Sx ± 20%                                    |
| 45° or 90° Bend corresponds to a straight pipe length of      |                | 0.3m                                        |
| T junction corresponds to a straight pipe length of 1.2m on t | he common bran | ch                                          |
| Clips distance                                                |                | max 1.5m                                    |
| TT                                                            |                | max 90s                                     |

Figure 22-4: Piping Design Parameters - U Pipe

### Piping Design "I" pipe - Single Channel (FLX-010):


# **Example:**

I-pipe network, Class C with In-line filter

Exhaust pipe of 10m (E), First hole at 20m (F), Last hole at 40m from the first hole (L), 9 holes

1. Verification of project constraints and determination of aspirator speed

|    |                                                             | Required     | Rules                |
|----|-------------------------------------------------------------|--------------|----------------------|
| E  | Exhaust pipe                                                | 10m          | ≤ 29 m 🗸             |
| F  | First hole                                                  | 20m          | 1 ÷ 30m-E ✓          |
| L  | Last hole                                                   | 40m          |                      |
| PL | Pipe length with low speed with <b>high aspirator speed</b> | 10+20+40=70m | ≤ 50 m ×<br>≤ 80 m × |
| N  | Number of holes                                             | 9            | See Table 🗸          |



2. Calculate nominal step between holes and hole position deviation form nominal

S = L / ( Number of holes – 1 ) = 40 / 8 = 5 m (≥2.5m) 
$$\checkmark$$

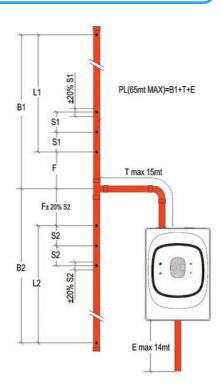
3. Determination of necessary Sensitivity Level and the hole diameters 2 3

| Number of Holes                            | _        | _    | 4    |      |        | -      | _      | 9      | 1 |
|--------------------------------------------|----------|------|------|------|--------|--------|--------|--------|---|
|                                            |          | 3    |      | 3    |        | '      | •      |        |   |
| Aspirator speed, max 80m for H and 50m for |          |      |      |      |        |        |        |        |   |
| 1                                          | H/L      | H/L  | H/L  | H/L  | H/L    | H/L    | H/L    | H/L    |   |
|                                            |          |      |      |      |        |        |        |        |   |
| Alarm Level Class C with/without filter    | LOW      | LOW  | LOW  | LOW  | wealum | wearum | wearum | Medium | 2 |
|                                            |          |      |      |      |        |        |        |        |   |
| Alarm Level Class B with/without filter    | High     | High | High | High | High   | High   | High   | High   |   |
|                                            |          |      |      |      |        |        |        |        |   |
| Alarm Level Class A without filter only    | High     | High | High | -    | _      | -      | -      |        |   |
| ,                                          | <u> </u> |      |      |      |        |        |        | _ 5 _  | , |

FAAST FLEX Product Guide FAAST FLEX

| Number of Holes                            | 2             | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10      | 11           | 12      | 13      | 14     | 15      | 16      | 17      | 18       | 19      | 20      | 21      | 22      |
|--------------------------------------------|---------------|--------|--------|--------|--------|--------|--------|--------|---------|--------------|---------|---------|--------|---------|---------|---------|----------|---------|---------|---------|---------|
| Aspirator speed, max 80m for H and 50m for | H/L           | H/L    | H/L    | H/L    | H/L    | H/L    | H/L    | H/L    | H/L     | H/L          | H/L     | H/L     | H/L    | H/L     | н       | н       | н        | Н       | н       | н       | н       |
| Alarm Level Class C with/without filter    | Low           |        | Low    |        |        |        | Medium |        | Medium  | High         | High    | High    |        | High    | High    | High    |          | High    | High    |         |         |
|                                            |               | Low    |        | Low    | Medium | Medium |        | Medium |         |              | Ŭ       |         | High   | nign    | rign    | nign    | High     | nign    | nign    | High    | High    |
| Alarm Level Class B with/without filter    | High          | High   | High   | High   | High   | High   | High   | High   | High    | High         | High    | High    | -      | -       | -       | -       | -        | -       | -       | -       | -       |
| Alarm Level Class A without filter only    | High          | High   | High   | -      | -      | -      | -      | -      | -       | -            | -       | -       | -      | -       | -       | -       | -        | -       | -       | -       | -       |
| Drilled hole diameter (mm)                 | H1 <b>6.5</b> | H1 5.5 | H1 4.5 | H1 4   | H1 3.5 | H1 3.5 | H1 3   | H1 3   | H1 2.5  | H1 2.5       | H1 2.5  | H1 2.5  | H1 2.5 | H1 2    | H1 2    | H1 2    | H1 2     | H1 2    | H1 2    | H1 2    | H1 2    |
|                                            | H2 <b>6.5</b> | H2 5.5 | H2 4.5 | H2 4   | H2 3.5 | H2 3.5 | H2 3   | H2 3   | H2 2.5  | H2 2.5       | H2 2.5  | H2 2.5  | H2 2.5 | H2 2    | H2 2    | H2 2    | H2 2     | H2 2    | H2 2    | H2 2    | H2 2    |
|                                            |               | H3 5.5 | H3 4.5 | H3 4   | Н3 3.5 | Н3 3.5 | Н3 3.5 | Н3 3   | Н3 2.5  | H3 2.5       | H3 2.5  | H3 2.5  | H3 2.5 | Н3 2.5  | H3 2    | H3 2    | H3 2     | H3 2    | H3 2    | H3 2    | H3 2    |
|                                            |               |        | H4 4.5 | H4 4   | H4 3.5 | H4 3.5 | H4 3.5 | H4 3.5 | H4 2.5  | H4 2.5       | H4 2.5  | H4 3    | H4 2.5 | H4 2.5  | H4 2    | H4 2    | H4 2     | H4 2    | H4 2    | H4 2    | H4 2    |
|                                            |               |        |        | H5 4.5 | H5 3.5 | H5 3.5 | H5 3.5 | H5 3.5 | H5 3    | H5 2.5       | H5 2.5  | H5 3    | H5 2.5 | H5 2.5  | H5 2.5  | H5 2    | H5 2     | H5 2    | H5 2    | H5 2    | H5 2    |
|                                            |               |        |        |        | H6 4   | H6 3.5 | H6 3.5 | H6 3.5 | H6 3    | H6 3         | H6 2.5  | H6 3    | H6 2.5 | H6 2.5  | H6 2.5  | H6 2.5  | H6 2.5   | H6 2.5  | H6 2    | H6 2    | H6 2    |
|                                            |               |        |        |        |        | H7 4   | H7 3.5 | H7 3.5 | H7 3    | H7 3         | H7 2.5  | H7 3    | H7 3   | H7 2.5  | H7 2.5  | H7 2.5  | H7 2.5   | H7 2.5  | H7 2.5  | H7 2.5  | H7 2.5  |
|                                            |               |        |        |        |        |        | H8 4   | H8 3.5 | H8 3    | H8 3         | H8 3    | H8 3    | H8 3   | H8 2.5  | H8 2.5  | H8 2.5  | H8 2.5   | H8 2.5  | H8 2.5  | H8 2.5  | H8 2.5  |
|                                            |               |        |        |        |        |        |        | H9 4   | Н9 3    | H9 3         | Н9 3    | Н9 3    | Н9 3   | Н9 2.5  | Н9 2.5  | H9 2.5  | H9 2.5   | H9 2.5  | H9 2.5  | H9 2.5  | H9 2.5  |
|                                            |               |        |        |        |        |        |        |        | H10 3.5 | H10 3        | H10 3   | H10 3.5 | H10 3  | H10 2.5 | H10 2.5 | H10 2.5 | H10 2.5  | H10 2.5 | H10 2.5 | H10 2.5 | H10 2.5 |
|                                            |               |        |        |        |        |        |        |        |         | H11 3.5      | H11 3   | H11 3.5 | H11 3  | H11 2.5 | H11 2.5 | H11 2.5 | H11 2.5  | H11 2.5 | H11 2.5 | H11 2.5 | H11 2.5 |
|                                            |               |        |        |        |        |        |        |        |         |              | H12 3.5 | H12 3.5 | H12 3  | H12 3   | H12 2.5 | H12 2.5 | H12 2.5  | H12 2.5 | H12 2.5 | H12 2.5 | H12 2.5 |
|                                            |               |        |        |        |        |        |        |        |         |              |         | H13 4   | H13 3  | H13 3   | H13 2.5 | H13 2.5 | H13 2.5  | H13 3   | H13 3   | H13 2.5 | H13 2.5 |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         | H14 4  | H14 3   |         | H14 2.5 |          | H14 3   | H14 3   | H14 2.5 | H14 3   |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         |        | H15 3.5 | H15 2.5 | H15 2.5 | H15 3    | H15 3   | H15 3   | H15 2.5 | H15 3   |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         |        |         | H16 3.5 | H16 3   | H16 3    | H16 3   | H16 3   | H16 3   | H16 3   |
|                                            |               |        |        |        |        |        |        |        |         | <del> </del> |         |         |        |         | 0.3     | H17 3.5 | H17 3    | H17 3   | H17 3   | H17 3   | H17 3   |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         |        |         |         | 3.3     | H18 3.5  | H18 3   | H18 3   | H18 3   | H18 3   |
|                                            |               |        |        |        |        |        |        |        |         | -            |         |         |        |         |         |         | 1110 3.3 | H19 4   | H19 3   | H19 3   | H19 3.5 |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         |        |         |         |         |          | 1117 4  |         | H20 3   |         |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         |        |         |         |         |          |         | H20 4   | -       | H20 3.5 |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         |        |         |         |         |          |         |         | H21 4   | H21 3.5 |
|                                            |               |        |        |        |        |        |        |        |         |              |         |         |        |         |         |         |          |         |         |         | H22 4.5 |

### Piping Design "U" Pipe - Single Channel (FLX-010):


# **Example:**

U-pipe network, Class C with In-line filter

Exhaust pipe of 5m (E), T-junction 10m (T), Branch of 30m (B1), First hole at 5m (F), 6 holes ...

1. Verification of project constraints and determination of aspirator speed

|    |                                                             | Required      | Rules                   |
|----|-------------------------------------------------------------|---------------|-------------------------|
| Е  | Exhaust pipe                                                | 5m            | ≤ 14 m 🗸                |
| Т  | T-junction position                                         | 10            | ≤ 10 m (15m-E) <b>✓</b> |
| B1 | Branch length                                               | 30m           |                         |
| F  | First hole, Branch 1                                        | 5m            | 1.25 ÷ 25m 🗸            |
| PL | Pipe length with low speed with <b>high aspirator speed</b> | 5+10+30=45m   | ≤ 45 m                  |
| L1 | Last hole position, Branch 1                                | 45-5-10-5=25m |                         |
| N  | Number of holes                                             | 6             | See Table 🗸             |

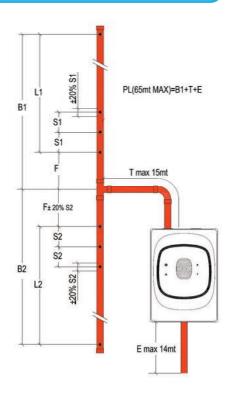


2. Calculate nominal step between holes and hole position deviation form nominal

S1 = L1 / ( Number of holes – 1 ) = 25 / 5 = 5 m (≥2.5m) 
$$\checkmark$$

$$\pm 0.2*5m = \pm 1m$$

3. Determination of necessary Sensitivity Level 2 and the hole diameters 3


| Branch Number of Holes                          |        |               | , ,           | 4      | 5      | 6        | 1 |
|-------------------------------------------------|--------|---------------|---------------|--------|--------|----------|---|
| Aspirator speed, max 65m for H and<br>45m for L | H/L    | H/L           | H/L           | H/L    | H/L    | H/       |   |
| Alarm Level Class C with/without filter         |        |               | mourum        | modium | mouram | High     | 2 |
| Alarm Level Class B with/without filter         | High   | High          | High          | High   | High   | High     |   |
| Alarm Level Class A without filter only         | High   | High          | -             | -      | -      |          |   |
| Drilled hole diameter (mm)                      | H1 6.5 | H1 <b>5.5</b> | H1 <b>4.5</b> | H1 3.5 | H1 3.5 | <b>3</b> |   |

FAAST FLEX Product Guide FAAST FLEX

# **Example:**

U-pipe network, Class C with In-line filter Exhaust pipe of 5m (E), T-junction 10m (T), Branch of 30m (B1), First hole at 5m (F), 6 holes and Branch 2 of 28m (B2)

|    |                                                             | Required      | Rules            |   |
|----|-------------------------------------------------------------|---------------|------------------|---|
| Е  | Exhaust pipe                                                | 5m            | ≤ 14 m           | / |
| Т  | T-junction position                                         | 10            | ≤ 10 m (15m-E)   | / |
| B1 | Branch length                                               | 30m           |                  |   |
| F  | First hole, Branch 1                                        | 5m            | 1.25 ÷ 25m       | / |
| PL | Pipe length with low speed with <b>high aspirator speed</b> | 5+10+30=45m   | ≤ 45 m<br>≤ 65 m | / |
| L1 | Last hole position, Branch 1                                | 45-5-10-5=25m |                  |   |
| N  | Number of holes                                             | 6             | See Table        | / |
| B2 | Branch 2 length                                             | 28m           | 27 ÷ 30m         | / |
| L2 | Last hole, Branch 2                                         | 28-5=23m      |                  |   |



4. For Branch 2, calculate nominal step between holes and hole position deviation from nominal

S2 = L2 / (Number of holes – 1) = 23 / 5 = **4.6 m (
$$\geq$$
2,5m)**  $\checkmark$  ± 0.2\*4.6m = ±**0.9m**

5. For Branch 2, first hole position can be 5±0.9m

FAAST FLEX Product Guide

| Branch Number of Holes                       |    | 1   |    | 2    |    | 3     |    | 4    |    | 5    |    | 6    |    | 7    |    | 8    |    | 9    |     | 10   |     | 11   |
|----------------------------------------------|----|-----|----|------|----|-------|----|------|----|------|----|------|----|------|----|------|----|------|-----|------|-----|------|
| Aspirator speed, max 65m for H and 45m for L | Н  | I/L | ı  | H/L  |    | H/L   | ŀ  | -l/L |    | H/L  | ŀ  | -I/L | ŀ  | -I/L | ı  | H/L  |    | H/L  |     | H/L  |     | Н    |
| Alarm Level Class C with/without filter      | L  | ow  | L  | .ow  | М  | edium | Me | dium | Me | dium | Н  | ligh | н  | igh  | F  | ligh | ŀ  | ligh | ŀ   | ligh | F   | ligh |
| Alarm Level Class B with/without filter      | Hi | igh | Н  | ligh |    | High  | Н  | ligh | H  | ligh | н  | ligh | Н  | igh  |    | -    |    | -    |     | -    |     | -    |
| Alarm Level Class A without filter only      | Hi | igh | Н  | ligh |    | -     |    | -    |    | -    |    | -    |    | -    |    | -    |    | -    |     | -    |     | -    |
| Drilled hole diameter (mm)                   | H1 | 6.5 | H1 | 5.5  | H1 | 4.5   | H1 | 3.5  | H1 | 3.5  | H1 | 3    | H1 | 3    | H1 | 3    | H1 | 2.5  | H1  | 2    | H1  | 2    |
|                                              |    |     | H2 | 5.5  | H2 | 4.5   | H2 | 4    | H2 | 3.5  | H2 | 3.5  | H2 | 3    | H2 | 3    | H2 | 2.5  | H2  | 2    | H2  | 2    |
|                                              |    |     |    |      | НЗ | 5     | НЗ | 4    | НЗ | 3.5  | НЗ | 3.5  | НЗ | 3.5  | НЗ | 3    | НЗ | 2.5  | НЗ  | 2    | НЗ  | 2    |
|                                              |    |     |    |      |    |       | H4 | 4.5  | H4 | 4    | H4 | 4    | H4 | 3.5  | H4 | 3    | H4 | 3    | H4  | 2    | H4  | 2    |
|                                              |    |     |    |      |    |       |    |      | H5 | 4.5  | H5 | 4    | H5 | 4    | H5 | 3.5  | H5 | 3    | H5  | 2.5  | H5  | 2    |
|                                              |    |     |    |      |    |       |    |      |    |      | Н6 | 4.5  | Н6 | 4    | Н6 | 3.5  | H6 | 3    | H6  | 2.5  | H6  | 2    |
|                                              |    |     |    |      |    |       |    |      |    |      |    |      | Н7 | 4.5  | H7 | 4    | H7 | 3    | H7  | 2.5  | H7  | 2    |
|                                              |    |     |    |      |    |       |    |      |    |      |    |      |    |      | Н8 | 4.5  | H8 | 3.5  | H8  | 2.5  | Н8  | 2    |
|                                              |    |     |    |      |    |       |    |      |    |      |    |      |    |      |    |      | Н9 | 4    | Н9  | 3    | Н9  | 2.5  |
|                                              |    |     |    |      |    |       |    |      |    |      |    |      |    |      |    |      |    |      | H10 | 3.5  | H10 | 2.5  |
|                                              |    |     |    |      |    |       |    |      |    |      |    |      |    |      |    |      |    |      |     |      | H11 | 3    |

### Piping Design "I" pipe - Dual Channel (FLX-020):

# **Example:**

FLX-020 I-pipe network, Class C without In-line filter Exhaust pipe of 10m (E), First hole at 5m (F), Last hole at 35m from the first hole (L1), 6 holes

1. Verification of project constraints and determination of aspirator speed

| <ul><li>N Number of holes</li><li>E Exhaust pipe</li><li>F First hole with low speed</li></ul> | 6<br>10m    | See Table   max 14 (See Table row B) | ±20% S1    |
|------------------------------------------------------------------------------------------------|-------------|--------------------------------------|------------|
| 1 1                                                                                            |             | max 14 (See Table row B)             |            |
| F First hole with low speed                                                                    |             |                                      | ±20% S1    |
| with high aspirator speed                                                                      | 5m          | 1 ÷ (26-10) ✓<br>1 ÷ (30-10)         |            |
| L1 Last hole                                                                                   | 35m         |                                      |            |
| PL Pipe length with low speed with high aspirator speed                                        | 10+5+35=50m | ≤ 50 m                               | E max 14mt |

2. Calculate nominal step between holes and hole position deviation form nominal

$$\pm 0.2*7m = \pm 1.4m$$

3. Determination of necessary Sensitivity Level 3 and the hole diameters 4

| Branch Number of Holes                       | 1             | 2           | 3     | 4           | 5           | 6      |
|----------------------------------------------|---------------|-------------|-------|-------------|-------------|--------|
| Aspirator speed, max 65m for H and 45m for L | H/L           | H/L         | H/L   | H/L         | H/L         | H/L    |
| A - Maximum First Hole Distance (meters)     | NN            | 30/30       | 30/30 | 30/30       | 30/30       | 30/26  |
| B - Maximum Exhaust Pipe Length (meters)     | 17/17         | 17/17       | 17/17 | 17/17       | 17/17       | 14/14  |
| Alarm Level Class C with/without filter      | Low           | Low         | Low   | Medium      | Medium      | Medium |
| Alarm Level Class B with/without filter      | High          | High        | High  | High        | High        | High   |
| Alarm Level Class A without filter only      | High          | High        | High  | -           | 1           |        |
| Drilled hole diameter (mm)                   | H1 <b>6.5</b> | H1 <b>6</b> | H1 5  | H1 <b>4</b> | H1 <b>4</b> | н 4    |

# **Example:**

FLX-020 I-pipe network, Class C without In-line filter Exhaust pipe of 10m (E), First hole at 5m (F), Last hole at 35m from the first hole (L1), 6 holes chamber 2: first hole at 4m (F2), Last hole at 33m from the first hole (L2)

|    |                                                             | Required    | Rules                               |   | L1 S1 S1 |
|----|-------------------------------------------------------------|-------------|-------------------------------------|---|----------|
| N  | Number of holes                                             | 6           | See Table 🗸                         | 1 | ±20%     |
| Е  | Exhaust pipe                                                | 10m         | max 14 (See Table row B)            |   | ±20% S1  |
| F  | First hole with low speed with <b>high aspirator speed</b>  | 5m          | 1 ÷ (26-10) <b>✓</b><br>1 ÷ (30-10) |   |          |
| L1 | Last hole                                                   | 35m         |                                     |   |          |
| PL | Pipe length with low speed with <b>high aspirator speed</b> | 10+5+35=50m | ≤ 50 m ✓<br>≤ 80 m ✓                |   | Emu      |
| L1 | Last hole, chamber 2                                        | 33m         |                                     |   | 2.00     |

4. Verify that branch 2 first hole position (4m) satisfies rules

F2min = 
$$F - 0.2*S1 = 5m - 0.2*7 = 3.6 m$$

5. Calculate nominal step between holes and hole position deviation from nominal for branch 2

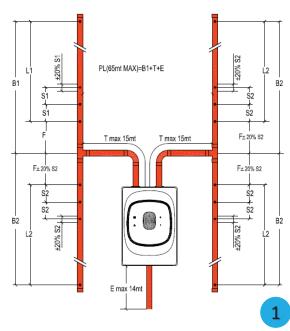
$$S2 = L2 / (Number of holes - 1) = 33 / 5 = 6.6 m ( \ge 2.5 m)$$

$$\pm 0.2*6.6m = \pm 1.3m$$

FAAST FLEX Product Guide FAAST FLEX

| Branch Number of Holes                       | 1        | 2           | 3           | 4           | 5           | 6           | 7             | 8             | 9             | 10            | 11             | 12            | 13            | 14             | 15            | 16             | 17             | 18             |
|----------------------------------------------|----------|-------------|-------------|-------------|-------------|-------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|----------------|---------------|----------------|----------------|----------------|
| Aspirator speed, max 65m for H and 45m for L | H/L      | H/L         | H/L         | H/L         | H/L         | H/L         | H/L           | H/L           | H/L           | H/L           | H/L            | Н             | Н             | Н              | Н             | Н              | Н              | Н              |
| A - Maximum First Hole Distance (meters)     | NN       | 30/30       | 30/30       | 30/30       | 30/30       | 30/26       | 30/22         | 30/17         | 30/13         | 30/8          | 30/3           | 28            | 24            | 19             | 15            | 10             | 6              | 1              |
| B - Maximum Exhaust Pipe Length (meters)     | 14/14    | 14/14       | 14/14       | 14/14       | 14/14       | 14/14       | 14/14         | 14/14         | 14/12         | 14/7          | 14/2           | 14            | 14            | 14             | 14            | 9              | 5              | 0              |
| Alarm Level Class C with/without filter      | Low      | Low         | Low         | Medium      | Medium      | Medium      | Medium        | Medium        | High          | High          | High           | High          | High          | High           | High          | High           | High           | High           |
| Alarm Level Class B with/without filter      | High     | High        | High        | High        | High        | High        | High          | High          | -             | -             | -              | -             | -             | -              | -             | -              | -              | -              |
| Alarm Level Class A without filter only      | High     | High        | High        | -           | -           | -           | -             | -             | -             | -             | -              | -             | -             | -              | -             | -              | -              | -              |
| Drilled hole diameter (mm)                   | H1 6.5   | H1 6        | H1 5        | H1 <b>4</b> | H1 <b>4</b> | H1 3        | H1 3          | H1 3          | H1 <b>2.5</b> | H1 2.5        | H1 2.5         | H1 <b>2.5</b> | H1 2          | H1 2           | H1 2          | H1 2           | H1 2           | H1 2           |
|                                              |          | H2 <b>6</b> | H2 <b>5</b> | H2 <b>4</b> | H2 <b>4</b> | H2 <b>4</b> | H2 3.5        | H2 <b>3</b>   | H2 <b>2.5</b> | H2 <b>2.5</b> | H2 <b>2.5</b>  | H2 <b>2.5</b> | H2 <b>2</b>   | H2 <b>2</b>    | H2 <b>2</b>   | H2 <b>2</b>    | H2 <b>2</b>    | H2 <b>2</b>    |
|                                              |          |             | H3 <b>6</b> | H3 <b>5</b> | H3 <b>4</b> | H3 <b>4</b> | H3 <b>3.5</b> | Н3 3          | Н3 3          | H3 <b>3</b>   | H3 <b>2.5</b>  | H3 <b>2.5</b> | H3 <b>2</b>   | H3 <b>2</b>    | H3 <b>2</b>   | H3 <b>2</b>    | H3 <b>2</b>    | H3 <b>2</b>    |
|                                              |          |             |             | H4 <b>6</b> | H4 5        | H4 <b>4</b> | H4 <b>4</b>   | H4 <b>3.5</b> | H4 <b>3</b>   | H4 <b>3</b>   | H4 <b>2.5</b>  | H4 <b>2.5</b> | H4 <b>2</b>   | H4 <b>2.5</b>  | H4 <b>2</b>   | H4 <b>2</b>    | H4 <b>2</b>    | H4 <b>2</b>    |
|                                              |          |             |             |             | H5 <b>6</b> | H5 <b>5</b> | H5 <b>4</b>   | H5 <b>4</b>   | H5 <b>3.5</b> | H5 <b>3</b>   | H5 <b>3</b>    | H5 <b>2.5</b> | H5 <b>2.5</b> | H5 <b>2.5</b>  | H5 <b>2.5</b> | H5 <b>2</b>    | H5 <b>2</b>    | H5 <b>2</b>    |
|                                              |          |             |             |             |             | H6 <b>6</b> | H6 <b>4.5</b> | H6 <b>4</b>   | H6 <b>4</b>   | H6 <b>3.5</b> | H6 <b>3</b>    | H6 <b>3</b>   | H6 <b>3</b>   | H6 <b>2.5</b>  | H6 <b>2.5</b> | H6 <b>2.5</b>  | H6 <b>2</b>    | H6 <b>2</b>    |
|                                              |          |             |             |             |             |             | H7 <b>6</b>   | H7 <b>5</b>   | H7 <b>4.5</b> | H7 <b>4</b>   | H7 <b>3.5</b>  | H7 <b>3</b>   | H7 <b>3</b>   | H7 <b>2.5</b>  | H7 <b>2.5</b> | H7 <b>2.5</b>  | H7 <b>2</b>    | H7 <b>2</b>    |
|                                              |          |             |             |             |             |             |               | H8 <b>6</b>   | H8 <b>5</b>   | H8 <b>4</b>   | H8 <b>4</b>    | H8 <b>3.5</b> | H8 <b>3.5</b> | H8 <b>2.5</b>  | H8 <b>2.5</b> | H8 <b>2.5</b>  | H8 <b>2</b>    | H8 <b>2</b>    |
|                                              |          |             |             |             |             |             |               |               | H9 <b>6</b>   | H9 <b>4.5</b> | H9 <b>4</b>    | H9 <b>3.5</b> | H9 <b>3.5</b> | Н9 3           | H9 <b>2.5</b> | H9 <b>2.5</b>  | H9 <b>2</b>    | H9 <b>2</b>    |
|                                              |          |             |             |             |             |             |               |               |               | H10 <b>6</b>  | H10 <b>4.5</b> | H10 <b>4</b>  | H10 <b>4</b>  | H10 <b>3</b>   | H10 <b>3</b>  | H10 <b>2.5</b> | H10 <b>2.5</b> | H10 <b>2</b>   |
|                                              |          |             |             |             |             |             |               |               |               |               | H11 6          | H11 <b>4</b>  | H11 <b>4</b>  | H11 3          | H11 3         | H11 <b>2.5</b> | H11 <b>2.5</b> | H11 <b>2.5</b> |
|                                              |          |             |             |             |             |             |               |               |               |               |                | H12 <b>6</b>  | H12 <b>5</b>  | H12 <b>3</b>   | H12 <b>3</b>  | H12 <b>2.5</b> | H12 <b>2.5</b> | H12 <b>2.5</b> |
|                                              |          |             |             |             |             |             |               |               |               |               |                |               | H13 <b>6</b>  | H13 <b>3.5</b> | H13 <b>3</b>  | H13 <b>2.5</b> | H13 <b>2.5</b> | H13 <b>2.5</b> |
|                                              |          |             |             |             |             |             |               |               |               |               |                |               |               | H14 5          | H14 3.5       | H14 3          | H14 2.5        | H14 <b>2.5</b> |
|                                              |          |             |             |             |             |             |               |               |               | ļ             | ļ              |               |               | ļ              | H15 <b>5</b>  | H15 3.5        | H15 3          | H15 3          |
|                                              |          |             |             |             |             |             |               |               |               | ļ             | ļ              | <b>.</b>      |               | ļ              |               | H16 <b>5</b>   | H16 3.5        | H16 3          |
|                                              |          |             |             | ļ           |             |             |               |               |               | 1             |                |               |               |                |               |                | H17 <b>5</b>   | H17 3.5        |
|                                              | <u> </u> | <u> </u>    | l           | <u> </u>    | l           | <u> </u>    |               |               |               | <u> </u>      | <u> </u>       | <u> </u>      |               | <u> </u>       |               |                |                | H18 <b>5</b>   |

### Piping Design "U" pipe - Dual Channel (FLX-020):


# **Example:**

FLX-020 U-pipe network, Class C with In-line filter

Without Exhaust pipe (E), T-junction 1m (T), Branch of 40m (B1), First hole at 20m (F), 6 holes

1. Verification of project constraints and determination of aspirator speed

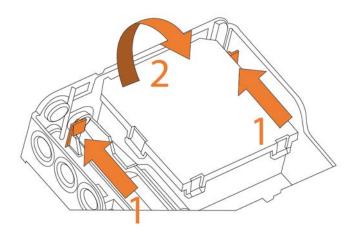
|    |                                                                     | Required    | Rules                                      |
|----|---------------------------------------------------------------------|-------------|--------------------------------------------|
| N  | Number of holes                                                     | 6           | See Table 🗸                                |
| Е  | Exhaust pipe                                                        | 0m          | See Table row C 🗸                          |
| Т  | T-junction position                                                 | 1m          | See Table row A 🗸                          |
| B1 | Branch length                                                       | 10m         |                                            |
| F  | First hole Branch 1 with low speed with <b>high aspirator speed</b> | 20m         | 1.25 ÷ 18m (19-1) X<br>1.25 ÷ 29m (30-1) ✓ |
| PL | Pipe length with high aspirator speed                               | 40+1+0=41m  | ≤ 65 m ✓                                   |
| L1 | Last hole position, Branch 1                                        | 41-1-20=20m |                                            |



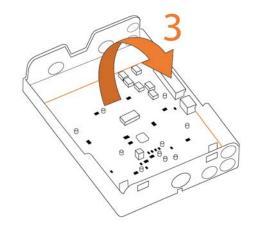
2. Calculate nominal step between holes and hole position deviation form nominal

$$\pm 0.2*4m = \pm 0.8m$$

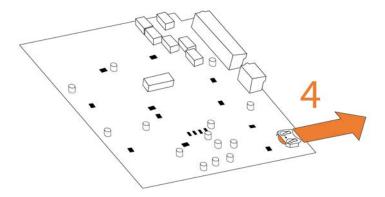
3. Determination of necessary Sensitivity Level 3 and the hole diameters


| Branch Number of Holes                       | 1            | 2            | 3            | 4     | 5     | 6     |
|----------------------------------------------|--------------|--------------|--------------|-------|-------|-------|
| Aspirator speed, max 65m for H and 45m for L | H/L          | H/L          | H/L          | H/L   | H/L   | H/L   |
| A - Maximum T-Junction Distance (meters)     | 15/15        | 15/15        | 15/15        | 15/15 | 15/15 | 15/15 |
| B - Maximum First Hole Distance (meters)     | <b>30/30</b> | <b>30/30</b> | <b>30/30</b> | 30/27 | 30/23 | 30/19 |
| C - Maximum Exhaust Pipe Length (meters)     | 14/14        | 14/14        | 14/14        | 14/14 | 14/14 | 14/14 |
| Alarm Level Class C with/without filter      | Low          | Low          | Medium       | High  | High  | High  |
| Alarm Level Class B with/without filter      | High         | High         |              |       | -     | -     |
| Alarm Level Class A without filter only      | High         | -            |              |       | -     | 1     |

FAAST FLEX Product Guide FAAST FLEX


| Branch Number of Holes                       | 1                   | 2           |                    |               | 3             | 4    |               |               | 5            |               | 6             |              | 7   |       | 8   |      | 9   |  |
|----------------------------------------------|---------------------|-------------|--------------------|---------------|---------------|------|---------------|---------------|--------------|---------------|---------------|--------------|-----|-------|-----|------|-----|--|
| Aspirator speed, max 65m for H and 45m for L | H/L                 | H/L         |                    |               | H/L           |      | H/L           |               | H/L          |               | H/L           |              | H/L |       | Н   |      | Н   |  |
| A - Maximum T-Junction Distance (meters)     | <b>15/1</b> 5       | <b>15/1</b> | 5                  | <b>15/1</b> 5 |               | 15   | /15           | <b>15/1</b> 5 |              | <b>15/1</b> 5 |               | <b>15/13</b> |     | 15    |     | 6    |     |  |
| B - Maximum First Hole Distance (meters)     | <mark>30</mark> /30 | <b>30/3</b> | <b>30/30 30/30</b> |               | 30/27         |      | 30/23         |               | <b>30/19</b> |               | <b>30/1</b> 5 |              | 1   | 15.25 |     | 7.25 |     |  |
| C - Maximum Exhaust Pipe Length (meters)     | <b>14/14</b>        | 14/1        | 14/14 14/14        |               | <b>14/1</b> 4 |      | <b>14/1</b> 4 |               | <b>14/14</b> |               | <b>14/13</b>  |              | 14  |       |     | 6    |     |  |
| Alarm Level Class C with/without filter      | Low                 | Low         |                    | Medium        |               | High |               | High          |              | High          |               | High         |     | High  |     | High |     |  |
| Alarm Level Class B with/without filter      | High                | High        |                    | High          |               | High |               | -             |              | -             |               | -            |     | -     |     | -    |     |  |
| Alarm Level Class A without filter only      | High                |             |                    | -             |               | -    |               | -             |              | -             |               | -            |     | -     |     |      |     |  |
| Drilled hole diameter (mm)                   | H1 <b>6</b>         | H1 4        | 4                  | H1            | 3             | H1   | 3             | H1            | 2.5          | H1            | 2.5           | H1           | 2   | H1    | 2   | H1   | 2   |  |
|                                              |                     | H2 <b>(</b> | 5                  | H2            | 4             | H2   | 3             | H2            | 3            | H2            | 2.5           | H2           | 2.5 | H2    | 2   | H2   | 2   |  |
|                                              |                     |             |                    | Н3            | 6             | Н3   | 3             | Н3            | 3            | Н3            | 2.5           | Н3           | 2.5 | Н3    | 2.5 | Н3   | 2   |  |
|                                              |                     |             |                    |               |               | H4   | 6             | Н4            | 3            | H4            | 3             | Н4           | 2.5 | H4    | 2.5 | H4   | 2   |  |
|                                              |                     |             |                    |               |               |      |               | Н5            | 6            | H5            | 3             | H5           | 2.5 | H5    | 2.5 | H5   | 2.5 |  |
|                                              |                     |             |                    |               |               |      |               |               |              | Н6            | 6             | Н6           | 3   | H6    | 2.5 | H6   | 2.5 |  |
|                                              |                     |             |                    |               |               |      |               |               |              |               |               | H7           | 6   | H7    | 3   | H7   | 2.5 |  |
|                                              |                     |             |                    |               |               |      |               |               |              |               |               |              |     | Н8    | 6   | Н8   | 2.5 |  |
|                                              |                     |             |                    |               |               |      |               |               |              |               |               |              |     |       |     | Н9   | 5.5 |  |

## 23 Battery Removal for Recycling


- 1. Remove the manifold by detaching the two clips.
- 2. Rotate the manifold and the sensing head to access the detector circuit.



3. Remove the PCB from the plastic base.



4. Remove the battery using a small screwdriver and following the directions of the arrow.



5. Recycle the CR2032 Lithium battery in accordance with your local regulations.

